Rank one convexity of the exponentiated Hencky-logarithmic strain energy in finite elastostatics

We investigate a family of isotropic volumetric-isochoric decoupled strain energies F 7→ WeH(F ) := ŴeH(U) :=    μ k e ‖ devn logU‖ 2 + κ 2k̂ e [tr(logU)] 2 if det F > 0, +∞ if detF ≤ 0, based on the Hencky-logarithmic (true, natural) strain tensor logU , where μ > 0 is the infinitesimal shear modulus, κ = 2μ+3λ 3 > 0 is the infinitesimal bulk modulus with λ the first Lamé constant, k, k̂ are dimensionless parameters, F = ∇φ is the gradient of deformation, U = √ F TF is the right stretch tensor and devn logU = logU − 1 n tr(logU) · 1 is the deviatoric part (the projection onto the traceless tensors) of the strain tensor logU . For plane elastostatics, i.e. n = 2, we prove the rank-one convexity of this family. Moreover, we show that the corresponding Cauchy (true) stress-true strain relation is invertible and we discuss the monotonicity of the Cauchy (true) stress tensor as a function of the true strain tensor. We also prove that the rank-one convexity of the energies belonging to this family is not preserved in three-dimension and that the energy F 7→ e ‖ logU‖ 2 , F ∈ GL(n), n ∈ N, n ≥ 2 is not rank-one convex. An immediate application in multiplicative elasto-plasticity is proposed.

[1]  C. Vallée,et al.  On the dual variable of the Cauchy stress tensor in isotropic finite hyperelasticity , 2007, 0711.1479.

[2]  M. F. Beatty Introduction to Nonlinear Elasticity , 1996 .

[3]  R. Hill The mathematical theory of plasticity , 1950 .

[4]  Jay D. Humphrey,et al.  An invariant basis for natural strain which yields orthogonal stress response terms in isotropic hyperelasticity , 2000 .

[5]  P. Rougée An intrinsic Lagrangian statement of constitutive laws in large strain , 2006 .

[6]  Nicholas Ayache,et al.  Riemannian Elasticity: A Statistical Regularization Framework for Non-linear Registration , 2005, MICCAI.

[7]  P. Gilormini,et al.  Combining the logarithmic strain and the full-network model for a better understanding of the hyperelastic behavior of rubber-like materials , 2005 .

[8]  Patrizio Neff,et al.  Sum of squared logarithms - an inequality relating positive definite matrices and their matrix logarithm , 2013 .

[9]  P. Neff,et al.  On the convexity of the function C ↦ f(det C) on positive-definite matrices , 2012, 1209.5535.

[10]  Christian Wieners,et al.  Comparison of models for finite plasticity: A numerical study , 2003 .

[11]  P. Neff,et al.  The axiomatic deduction of the quadratic Hencky strain energy by Heinrich Hencky , 2014, 1402.4027.

[12]  K. Heiduschke The logarithmic strain space description , 1995 .

[13]  O. Bruhns,et al.  Existence and uniqueness of the integrable-exactly hypoelastic equation $$\mathop \tau \limits^ \circ = \lambda (trD){\rm I} + 2\mu D$$ and its significance to finite inelasticity , 1999 .

[14]  H. Hencky,et al.  Zur Theorie plastischer Deformationen und der hierdurch im Material hervorgerufenen Nachspannungen , 1924 .

[15]  K. Bathe,et al.  A HYPERELASTIC-BASED LARGE STRAIN ELASTO-PLASTIC CONSTITUTIVE FORMULATION WITH COMBINED ISOTROPIC-KINEMATIC HARDENING USING THE LOGARITHMIC STRESS AND STRAIN MEASURES , 2005 .

[16]  J. K. Knowles,et al.  On the ellipticity of the equations of nonlinear elastostatics for a special material , 1975 .

[17]  Hans Richter Zum Logarithmus einer Matrix , 1949 .

[18]  T. R. Hughes,et al.  Mathematical foundations of elasticity , 1982 .

[19]  H. Altenbach,et al.  Acceleration waves and ellipticity in thermoelastic micropolar media , 2010 .

[20]  James K. Knowles,et al.  On the failure of ellipticity and the emergence of discontinuous deformation gradients in plane finite elastostatics , 1978 .

[21]  Paul Rougée,et al.  Mécanique des grandes transformations , 1997 .

[22]  S. Marzano An interpretation of Baker-Ericksen inequalities in uniaxial deformation and stress , 1983 .

[23]  H. Xiao,et al.  Hencky Strain and Hencky Model: Extending History and Ongoing Tradition , 2005 .

[24]  Convexity Conditions for Rotationally Invariant Functions in Two Dimensions , 2002 .

[25]  Patrizio Neff,et al.  A Riemannian approach to strain measures in nonlinear elasticity , 2014 .

[26]  Patrizio Neff,et al.  A note on tensile instabilities and loss of ellipticity for a fiber-reinforced nonlinearly elastic solid , 2006 .

[27]  Paul Ludwik,et al.  Elemente der technologischen Mechanik , 1909 .

[28]  H. Hencky,et al.  Welche Umstände bedingen die Verfestigung bei der bildsamen Verformung von festen isotropen Körpern? , 1929 .

[29]  Jörg Schröder,et al.  Construction of polyconvex, anisotropic free‐energy functions , 2003 .

[30]  P. Neff,et al.  Approximation of anisotropic elasticity tensors at the reference state with polyconvex energies , 2009 .

[31]  C. Truesdell,et al.  Interpretation of adscititious inequalities through the effects pure shear stress produces upon an isotropie elastic solid , 1974 .

[32]  Alena Kruisová,et al.  Formulation, validation and numerical procedures for Hencky's elasticity model , 2006 .

[33]  L. Anand,et al.  Finite deformation constitutive equations and a time integrated procedure for isotropic hyperelastic—viscoplastic solids , 1990 .

[34]  G. Magli,et al.  Relativistic elastomechanics as a lagrangian field theory , 1992 .

[35]  R. Rivlin,et al.  On the speed of propagation of waves in a deformed compressible elastic material , 1978 .

[36]  Emil Ernst,et al.  Ellipticity Loss in Isotropic Elasticity , 1998 .

[37]  On SO(n)-Invariant Rank 1 Convex Functions , 2003 .

[38]  H. Alexander The tensile instability of an inflated cylindrical membrane as affected by an axial load , 1971 .

[39]  Bernard Dacorogna Necessary and sufficient conditions for strong ellipticity of isotropic functions in any dimension , 2001 .

[40]  O. Bruhns,et al.  Finite Bending of a Rectangular Block of an Elastic Hencky Material , 2002 .

[41]  Heinrich Hencky,et al.  The Elastic Behavior of Vulcanized Rubber , 1933 .

[42]  C. Jog The Explicit Determination of the Logarithm of a Tensor and Its Derivatives , 2008 .

[43]  Gilles Aubert,et al.  Necessary and sufficient conditions for isotropic rank-one convex functions in dimension 2 , 1995 .

[44]  I. Olkin,et al.  Inequalities: Theory of Majorization and Its Applications , 1980 .

[45]  Lallit Anand,et al.  Moderate deformations in extension-torsion of incompressible isotropic elastic materials , 1986 .

[46]  P. Rosakis Ellipticity and deformations with discontinuous gradients in finite elastostatics , 1990 .

[47]  A comprehensive constitutive inequality in finite elastic strain , 1975 .

[48]  A. Norris Eulerian conjugate stress and strain , 2007, 0708.2736.

[49]  R. Hill,et al.  On constitutive inequalities for simple materials—I , 1968 .

[50]  R. Rivlin,et al.  INSTABILITY OF AN ELASTIC MATERIAL , 1973 .

[51]  Z. Bažant Easy-to-Compute Tensors With Symmetric Inverse Approximating Hencky Finite Strain and Its Rate , 1998 .

[52]  A criterion for the strong ellipticity of the equilibrium equations of an isotropic non-linearly elastic material , 2011 .

[53]  R. Rivlin Restrictions on the Strain-Energy Function for an Elastic Material , 2004 .

[54]  C. Truesdell,et al.  The Non-Linear Field Theories Of Mechanics , 1992 .

[55]  A. Bertram An alternative approach to finite plasticity based on material isomorphisms , 1999 .

[56]  T. Böhlke,et al.  On the Rank 1 Convexity of Stored Energy Functions of Physically Linear Stress-Strain Relations , 2007 .

[57]  Heng Xiao,et al.  Constitutive inequalities for an isotropic elastic strain-energy function based on Hencky's logarithmic strain tensor , 2001, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[58]  S. Silling Numerical studies of loss of ellipticity near singularities in an elastic material , 1988 .

[59]  P. Mott,et al.  Limits to Poisson’s ratio in isotropic materials , 2009, 0909.4697.

[60]  C. Truesdell,et al.  Static grounds for inequalities in finite strain of elastic materials , 1963 .

[61]  P. Neff Some Results Concerning the Mathematical Treatment of Finite Plasticity , 2003 .

[62]  H. Richter Das isotrope Elastizitätsgesetz , 1948 .

[63]  R. Hill A theory of the yielding and plastic flow of anisotropic metals , 1948, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[64]  L. Zubov,et al.  Necessary and sufficient criteria for ellipticity of the equilibrium equations of a non-linearly elastic medium☆ , 1995 .

[65]  Y. Nakatsukasa,et al.  A logarithmic minimization property of the unitary polar factor in the spectral norm and the Frobenius matrix norm , 2013, 1302.3235.

[66]  R. Rivlin Large Elastic Deformations of Isotropic Materials , 1997 .

[67]  A. Tarantola,et al.  A logarithmic equation of state , 1998 .

[68]  M. Šilhavý An O(n) invariant rank 1 convex function that is not polyconvex , 2002 .

[69]  E. Kearsley,et al.  Asymmetric stretching of a symmetrically loaded elastic sheet , 1986 .

[70]  M. Mooney A Theory of Large Elastic Deformation , 1940 .

[71]  Material Strain Tensor , 2013 .

[72]  A. Raoult Non-polyconvexity of the stored energy function of a Saint Venant-Kirchhoff material , 1986 .

[73]  M. Aron On Certain Deformation Classes of Compressible Hencky Materials , 2006 .

[74]  Conditions necessaires de faible fermeture et de 1-rang convexite en dimension 3 , 1985 .

[75]  M. Reiner,et al.  On isotropic tensor-functions and the measure of deformation , 1956 .

[76]  Patrizio Neff,et al.  Mathematische Analyse multiplikativer Viskoplastizität , 2000 .

[77]  O. Bruhns,et al.  A thermodynamic finite-strain model for pseudoelastic shape memory alloys , 2006 .

[78]  P. Dłużewski,et al.  Anisotropic Hyperelasticity Based Upon General Strain Measures , 2000 .

[79]  Yuji Nakatsukasa,et al.  The minimization of matrix logarithms - on a fundamental property of the unitary polar factor , 2013, 1308.1122.

[80]  Miroslav Šilhavý,et al.  The Mechanics and Thermodynamics of Continuous Media , 2002 .

[81]  Z. Fiala Geometrical setting of solid mechanics , 2011 .

[82]  T. Sendova,et al.  On strong ellipticity for isotropic hyperelastic materials based upon logarithmic strain , 2005 .

[83]  J. C. Simo,et al.  Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory , 1992 .

[84]  A. Goriely,et al.  Positive or negative Poynting effect? The role of adscititious inequalities in hyperelastic materials , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[85]  The material time derivative of logarithmic strain , 1986 .

[86]  J. Ball Some Open Problems in Elasticity , 2002 .

[87]  O. Bruhns,et al.  Logarithmic strain, logarithmic spin and logarithmic rate , 1997 .

[88]  R. Fosdick,et al.  Generalized Baker–Ericksen Inequalities , 2006 .

[89]  Albert Tarantola Elements for Physics , 2006 .

[90]  L. Anand,et al.  A Large Strain Isotropic Elasticity Model Based on Molecular Dynamics Simulations of a Metallic Glass , 2011 .

[91]  P. Neff,et al.  Invariant formulation of hyperelastic transverse isotropy based on polyconvex free energy functions , 2003 .

[92]  L. Anand,et al.  Fracture of metallic glasses at notches: Effects of notch-root radius and the ratio of the elastic shear modulus to the bulk modulus on toughness , 2009 .

[93]  P. Neff A finite-strain elastic–plastic Cosserat theory for polycrystals with grain rotations , 2006 .

[94]  R. Batra,et al.  Generalized Poynting Effects in Predeformed Prismatic Bars , 1998 .

[95]  M. Šilhavý RANK 1 CONVEX HULLS OF ISOTROPIC FUNCTIONS IN DIMENSION 2 BY 2 , 2002 .

[96]  Heng Xiao,et al.  Elastoplasticity beyond small deformations , 2006 .

[97]  P. Neff,et al.  Anisotropic polyconvex energies on the basis of crystallographic motivated structural tensors , 2008 .

[98]  Arif Masud,et al.  A finite-strain finite element model for the pseudoelastic behavior of shape memory alloys , 1997 .

[99]  H. Simpson,et al.  On copositive matrices and strong ellipticity for isotropic elastic materials , 1983 .

[100]  Inequalities sufficient to ensure semi-invertibility of isotropic functions , 1975 .

[101]  J. E. Fitzgerald A tensorial Hencky measure of strain and strain rate for finite deformations , 1980 .

[102]  K. D. Patil,et al.  Conditions for the onset of elastic and material instabilities in hyperelastic materials , 2013 .

[103]  Characterization of Convex Isotropic Functions , 1997 .

[104]  Jia Lu,et al.  A general framework for the numerical solution of problems in finite elasto-plasticity , 1998 .

[105]  A. Tarantola Stress and strain in symmetric and asymmetric elasticity , 2009, 0907.1833.

[106]  C. Sansour,et al.  Viscoplasticity based on additive decomposition of logarithmic strain and unified constitutive equations: Theoretical and computational considerations with reference to shell applications , 2003 .

[107]  Daniel Balzani,et al.  Materially stable constitutive equations for arterial walls based on polyconvex energies — Application to damage modeling and residual stresses , 2006 .

[108]  Klaus-Jürgen Bathe,et al.  Modeling large strain anisotropic elasto-plasticity with logarithmic strain and stress measures , 2011 .

[109]  Stefan Hartmann,et al.  Polyconvexity of generalized polynomial-type hyperelastic strain energy functions for near-incompressibility , 2003 .

[110]  Michael Ortiz,et al.  A unified approach to finite deformation elastoplastic analysis based on the use of hyperelastic constitutive equations , 1985 .

[111]  J. Ball Convexity conditions and existence theorems in nonlinear elasticity , 1976 .

[112]  J. K. Knowles,et al.  On the failure of ellipticity of the equations for finite elastostatic plane strain , 1976 .

[113]  Patrizio Neff,et al.  NOTES ON STRAIN GRADIENT PLASTICITY: FINITE STRAIN COVARIANT MODELLING AND GLOBAL EXISTENCE IN THE INFINITESIMAL RATE-INDEPENDENT CASE , 2009 .

[114]  Eduardo N. Dvorkin,et al.  A finite element formulation for finite strain elasto-plastic analysis based on mixed interpolation of tensorial components , 1994 .

[115]  Normality and convexity of the yield surface in nonlinear plasticity , 1993 .

[116]  Patrizio Neff,et al.  Regularity up to the Boundary for Nonlinear Elliptic Systems Arising in Time-Incremental Infinitesimal Elasto-plasticity , 2008, SIAM J. Math. Anal..

[117]  A. Bertram Elasticity and Plasticity of Large Deformations: An Introduction , 2005 .

[118]  Y. Wang,et al.  A reformulation of the strong ellipticity conditions for unconstrained hyperelastic media , 1996 .

[119]  A. Nádai Plastic Behavior of Metals in the Strain‐Hardening Range. Part I , 1937 .

[120]  R. Dubey,et al.  Application of Objective Rates in Mechanical Modeling of Solids , 1996 .

[121]  Y. Fung,et al.  Inversion of a Class of Nonlinear Stress-Strain Relationships of Biological Soft Tissues , 1979 .

[122]  Ray W. Ogden COMPRESSIBLE ISOTROPIC ELASTIC SOLIDS UNDER FINITE STRAIN-CONSTITUTIVE INEQUALITIES , 1970 .

[123]  Lois de comportement elastique isotropes en grandes deformations , 1978 .

[124]  Direct tensor expression for natural strain and fast, accurate approximation , 2002 .

[125]  L. Anand,et al.  Notch-sensitive fracture of polycarbonate , 2004 .

[126]  On the theory of plane strain in finitely deformed compressible materials , 1979 .

[127]  Sur la faible fermeture de certains ensembles de contraintes en elasticite non-lineaire plane , 1987 .

[128]  M. Gurtin,et al.  On the Relationship between the Logarithmic Strain Rate and the Stretching Tensor , 1983 .

[129]  Anne Hoger,et al.  The stress conjugate to logarithmic strain , 1987 .

[130]  J. C. Simo Recent Developments in the Numerical Analysis of Plasticity , 1993 .

[131]  Heng Xiao,et al.  Choice of objective rate in single parameter hypoelastic deformation cycles , 2006 .

[132]  R. Fosdick,et al.  A note on non-uniqueness in linear elasticity theory , 1968 .

[133]  H. Simpson,et al.  On Bifurcation in Finite Elasticity: Buckling of a Rectangular Rod , 2008 .

[134]  Deformation produced by a simple tensile load in an isotropic elastic body , 1976 .

[135]  P. Neff,et al.  A variational approach for materially stable anisotropic hyperelasticity , 2005 .

[136]  Alexander Mielke Necessary and sufficient conditions for polyconvexity of isotropic functions ∗ , .

[137]  C. Sansour On the dual variable of the logarithmic strain tensor, the dual variable of the Cauchy stress tensor, and related issues , 2001 .

[138]  H. Hencky The Law of Elasticity for Isotropic and Quasi‐Isotropic Substances by Finite Deformations , 1931 .

[139]  Patrizio Neff Critique of "Two-dimensional examples of rank-one convex functions that are not quasiconvex" by M. K. Benaouda and J. J. Telega , 2005 .

[140]  X. Pennec Left-Invariant Riemannian Elasticity: a distance on shape diffeomorphisms ? , 2006 .

[141]  G. Holzapfel,et al.  A polyconvex framework for soft biological tissues. Adjustment to experimental data , 2006 .

[142]  Daniel Balzani,et al.  Modeling of anisotropic damage in arterial wallls based on polyconvex stored energy functions , 2005 .

[143]  Cornelius O. Horgan,et al.  On the volumetric part of strain-energy functions used in the constitutive modeling of slightly compressible solid rubbers , 2009 .

[144]  H. Richter Zur Elastizitätstheorie endlicher Verformungen , 1952 .

[145]  M. Lambrecht,et al.  Anisotropic additive plasticity in the logarithmic strain space: modular kinematic formulation and implementation based on incremental minimization principles for standard materials , 2002 .

[146]  Marius Buliga Four applications of majorization to convexity in the calculus of variations , 2008 .

[147]  Reza Naghdabadi,et al.  A finite strain kinematic hardening constitutive model based on Hencky strain: General framework, solution algorithm and application to shape memory alloys , 2011 .

[148]  M. Destrade,et al.  Deficiencies in numerical models of anisotropic nonlinearly elastic materials , 2012, Biomechanics and Modeling in Mechanobiology.

[149]  R. Ogden Non-Linear Elastic Deformations , 1984 .

[150]  E. A. Repetto,et al.  The computation of the exponential and logarithmic mappings and their first and second linearizations , 2001 .

[151]  B. Dacorogna Direct methods in the calculus of variations , 1989 .

[152]  D. Owen,et al.  A model for finite strain elasto-plasticity based on logarithmic strains: computational issues , 1992 .

[153]  J. Criscione,et al.  The Baker–Ericksen inequalities for hyperelastic models using a novel set of invariants of Hencky strain , 2005 .

[154]  M. Šilhavý On isotropic rank 1 convex functions , 1999, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[155]  H. Richter,et al.  Verzerrungstensor, Verzerrungsdeviator und Spannungstensor bei endlichen Formänderungen , 2015 .

[156]  R. Ogden,et al.  Inequalities associated with the inversion of elastic stress-deformation relations and their implications , 1977, Mathematical Proceedings of the Cambridge Philosophical Society.

[157]  Jörg Schröder,et al.  Poly-, quasi- and rank-one convexity in applied mechanics , 2010 .

[158]  Robert L. Hill,et al.  Constitutive inequalities for isotropic elastic solids under finite strain , 1970, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[159]  H. Hencky Das Superpositionsgesetz eines endlich deformierten relaxationsfähigen elastischen Kontinuums und seine Bedeutung für eine exakte Ableitung der Gleichungen für die zähe Flüssigkeit in der Eulerschen Form , 1929 .

[160]  Carlo Sansour,et al.  On the physical assumptions underlying the volumetric-isochoric split and the case of anisotropy , 2008 .

[161]  Roger I. Tanner,et al.  Heinrich Hencky: a rheological pioneer , 2003 .

[162]  J. Murphy Linear Isotropic Relations in Finite Hyperelasticity: Some General Results , 2007 .

[163]  Cornelius O. Horgan,et al.  Constitutive modeling for moderate deformations of slightly compressible rubber , 2009 .

[164]  Monotonicity of rotationally invariant convex and rank 1 convex functions , 2002, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.