The edge-statistics conjecture for $\ell \ll k^{6/5}$.

Let $k$ and $\ell$ be positive integers. We prove that if $1 \leq \ell \leq o_k(k^{6/5})$, then in every large enough graph $G$, the fraction of $k$-vertex subsets that induce exactly $\ell$ edges is at most $1/e + o_k(1)$. Together with a recent result of Kwan, Sudakov, and Tran, this settles a conjecture of Alon, Hefetz, Krivelevich, and Tyomkyn.

[1]  József Balogh,et al.  Maximum density of induced 5-cycle is achieved by an iterated blow-up of 5-cycle , 2016, Eur. J. Comb..

[2]  Noga Alon,et al.  Edge-statistics on large graphs , 2020, Comb. Probab. Comput..

[3]  Jan Volec,et al.  A bound on the inducibility of cycles , 2019, J. Comb. Theory, Ser. A.

[4]  Martin Charles Golumbic,et al.  The inducibility of graphs , 1975 .

[5]  Raphael Yuster On the exact maximum induced density of almost all graphs and their inducibility , 2019, J. Comb. Theory, Ser. B.

[6]  Benny Sudakov,et al.  Anticoncentration for subgraph statistics , 2018, J. Lond. Math. Soc..

[7]  Jacob Fox,et al.  A completion of the proof of the Edge-statistics Conjecture , 2018, ArXiv.

[8]  Dan Hefetz,et al.  On the inducibility of cycles , 2017, Electron. Notes Discret. Math..

[9]  Hamed Hatami,et al.  The inducibility of blow-up graphs , 2014, J. Comb. Theory, Ser. B.