Perfectly matched 20-nucleotide guide RNA sequences enable robust genome editing using high-fidelity SpCas9 nucleases

High-fidelity SpCas9 variants (eSpCas9 and SpCas9-HF1) have been engineered to reduce off-target effects. We found that changes in guide RNA length induced significant reductions in the editing activities of SpCas9 variants in plant cells. Single guide RNAs harboring precise, perfectly matched 20-nucleotide guide sequences are necessary for high on-target editing activities of eSpCas9 and SpCas9-HF1. Precise 20-nucleotide guide sequences derived from tRNA–sgRNA precursors enable robust on-target editing by these variants with enhanced specificity. Our work reveals an effective way of enhancing the use of the high-fidelity SpCas9 nucleases for efficient and precise genome engineering.

[1]  Erik L. G. Wernersson,et al.  BLISS is a versatile and quantitative method for genome-wide profiling of DNA double-strand breaks , 2017, Nature Communications.

[2]  J. Keith Joung,et al.  High frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells , 2013, Nature Biotechnology.

[3]  Jin-Soo Kim,et al.  Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases , 2014, Genome research.

[4]  Masaki Endo,et al.  Multigene Knockout Utilizing Off-Target Mutations of the CRISPR/Cas9 System in Rice , 2014, Plant & cell physiology.

[5]  Jin-Soo Kim,et al.  Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells , 2016, Nature Biotechnology.

[6]  J. Doudna,et al.  A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity , 2012, Science.

[7]  Simon L. Bullock,et al.  Augmenting CRISPR applications in Drosophila with tRNA-flanked sgRNAs , 2016, Nature Methods.

[8]  J. Joung,et al.  High-fidelity CRISPR-Cas9 variants with undetectable genome-wide off-targets , 2015, Nature.

[9]  David A. Scott,et al.  Double Nicking by RNA-Guided CRISPR Cas9 for Enhanced Genome Editing Specificity , 2013, Cell.

[10]  J. Keith Joung,et al.  Improving CRISPR-Cas nuclease specificity using truncated guide RNAs , 2014, Nature Biotechnology.

[11]  Jin-Soo Kim,et al.  Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases , 2014, Bioinform..

[12]  Yanpeng Wang,et al.  Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew , 2014, Nature Biotechnology.

[13]  David A. Scott,et al.  Rationally engineered Cas9 nucleases with improved specificity , 2015, Science.

[14]  Rui Zhang,et al.  Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion , 2017, Nature Biotechnology.

[15]  Eli J. Fine,et al.  DNA targeting specificity of RNA-guided Cas9 nucleases , 2013, Nature Biotechnology.

[16]  David R. Liu,et al.  Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification , 2014, Nature Biotechnology.

[17]  Martin J Aryee,et al.  Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells , 2016, Nature Biotechnology.

[18]  Yang Lei,et al.  CRISPR-P: a web tool for synthetic single-guide RNA design of CRISPR-system in plants. , 2014, Molecular Plant.

[19]  David R. Liu,et al.  Improving the DNA specificity and applicability of base editing through protein engineering and protein delivery , 2017, Nature Communications.

[20]  David R. Liu,et al.  High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity , 2013, Nature Biotechnology.

[21]  David R. Liu,et al.  Small Molecule-Triggered Cas9 Protein with Improved Genome-Editing Specificity , 2015, Nature chemical biology.

[22]  Daniel F. Voytas,et al.  Precision Genome Engineering and Agriculture: Opportunities and Regulatory Challenges , 2014, PLoS biology.

[23]  Meagan E. Sullender,et al.  Rational design of highly active sgRNAs for CRISPR-Cas9–mediated gene inactivation , 2014, Nature Biotechnology.

[24]  Yanpeng Wang,et al.  Genome editing in rice and wheat using the CRISPR/Cas system , 2014, Nature Protocols.

[25]  Jong-il Kim,et al.  Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells , 2015, Nature Methods.

[26]  David A. Scott,et al.  In vivo genome editing using Staphylococcus aureus Cas9 , 2015, Nature.

[27]  Yanpeng Wang,et al.  Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes , 2017, Nature Communications.

[28]  Martin J. Aryee,et al.  GUIDE-Seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases , 2014, Nature Biotechnology.

[29]  J. Keith Joung,et al.  Efficient Delivery of Genome-Editing Proteins In Vitro and In Vivo , 2014, Nature Biotechnology.

[30]  Eva Konečná,et al.  A Multipurpose Toolkit to Enable Advanced Genome Engineering in Plants[OPEN] , 2017, Plant Cell.

[31]  Jun Li,et al.  Targeted genome modification of crop plants using a CRISPR-Cas system , 2013, Nature Biotechnology.

[32]  E. Lander,et al.  Development and Applications of CRISPR-Cas9 for Genome Engineering , 2014, Cell.

[33]  James E. DiCarlo,et al.  RNA-Guided Human Genome Engineering via Cas9 , 2013, Science.

[34]  Martin J. Aryee,et al.  Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing , 2014, Nature Biotechnology.

[35]  Feng Zhang,et al.  A split-Cas9 architecture for inducible genome editing and transcription modulation , 2015, Nature Biotechnology.

[36]  Kabin Xie,et al.  Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system , 2015, Proceedings of the National Academy of Sciences.

[37]  Leslie S. Edwards,et al.  Mapping the genomic landscape of CRISPR–Cas9 cleavage , 2017, Nature Methods.

[38]  Daesik Kim,et al.  Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins , 2014, Genome research.

[39]  Le Cong,et al.  Multiplex Genome Engineering Using CRISPR/Cas Systems , 2013, Science.

[40]  Chance M. Nowak,et al.  Guide RNA engineering for versatile Cas9 functionality , 2016, Nucleic acids research.

[41]  Seung Woo Cho,et al.  Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease , 2013, Nature Biotechnology.

[42]  G. Church,et al.  CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering , 2013, Nature Biotechnology.