Geometric Pattern Matching Under Euclidean Motion

Abstract Given two planar sets A and B, we examine the problem of determining the smallest ϵ such that there is a Euclidean motion (rotation and translation) of A that brings each member of A within distance ϵ of some member of B. We establish upper bounds on the combinatorial complexity of this subproblem in model-based computer vision, when the sets A and B contain points, line segments, or (filled-in) polygons. We also show how to use our methods to substantially improve on existing algorithms for finding the minimum Hausdorff distance under Euclidean motion.

[1]  Jon M. Kleinberg,et al.  On dynamic Voronoi diagrams and the minimum Hausdorff distance for point sets under Euclidean motion in the plane , 1992, SCG '92.

[2]  Bernard Chazelle Triangulating a simple polygon in linear time , 1991, Discret. Comput. Geom..

[3]  Kurt Mehlhorn,et al.  Congruence, similarity, and symmetries of geometric objects , 1987, SCG '87.

[4]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[5]  Robert E. Tarjan,et al.  Data structures and network algorithms , 1983, CBMS-NSF regional conference series in applied mathematics.

[6]  Robert E. Tarjan,et al.  Triangulating a Simple Polygon , 1978, Inf. Process. Lett..

[7]  Endre Szemerédi,et al.  An Optimal-Time Algorithm for Slope Selection , 1989, SIAM J. Comput..

[8]  Stefan Schirra,et al.  Approximate decision algorithms for point set congruence , 1992, SCG '92.

[9]  Micha Sharir,et al.  The upper envelope of voronoi surfaces and its applications , 1991, SCG '91.

[10]  Helmut Alt,et al.  Measuring the resemblance of polygonal curves , 1992, SCG '92.

[11]  Hiroshi Imai,et al.  Minimax geometric fitting of two corresponding sets of points , 1989, SCG '89.

[12]  Richard Cole,et al.  Slowing down sorting networks to obtain faster sorting algorithms , 2015, JACM.

[13]  Richard Cole,et al.  Parallel merge sort , 1988, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).

[14]  Hiroshi Imai,et al.  Maximin location of convex objects in a polygon and related dynamic Voronoi diagrams , 1990, SCG '90.

[15]  Leonidas J. Guibas,et al.  A dichromatic framework for balanced trees , 1978, 19th Annual Symposium on Foundations of Computer Science (sfcs 1978).

[16]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.

[17]  Nimrod Megiddo,et al.  Applying parallel computation algorithms in the design of serial algorithms , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[18]  Esther M. Arkin,et al.  Matching points into noise regions: combinatorial bounds and algorithms , 1991, SODA '91.

[19]  Leonidas J. Guibas,et al.  Diameter, width, closest line pair, and parametric searching , 1992, SCG '92.

[20]  Kurt Mehlhorn,et al.  Congruence, similarity, and symmetries of geometric objects , 1987, SCG '87.

[21]  Jean-Daniel Boissonnat,et al.  Polygon Placement Under Translation and Rotation , 1988, RAIRO Theor. Informatics Appl..

[22]  Esther M. Arkin,et al.  An efficiently computable metric for comparing polygonal shapes , 1991, SODA '90.

[23]  William Rucklidge Lower Bounds for the Complexity of the Hausdorff Distance , 1993, CCCG.

[24]  Sivan Toledo,et al.  Applications of parametric searching in geometric optimization , 1992, SODA '92.