Dual-controlled nanoparticles exhibiting AND logic.

Dual-controlled nanoparticles (DCNPs) are synthesized by attaching two different types of molecular machines, light-responsive nanoimpellers and pH-responsive nanovalves, to different regions of mesoporous silica nanoparticles. Nanoimpellers are based on azobenzene derivatives that are tethered to the nanopore interiors, while nanovalves are based on [2]pseudorotaxanes that are tethered to the nanoparticle surfaces. The different molecular machines operate through separate mechanisms to control the release of guest molecules that are loaded into the nanopores. When used in conjunction with one another, a sophisticated controllable release system behaving as an AND logic gate is obtained.

[1]  W. L. Mock,et al.  Cycloaddition induced by cucurbituril. A case of Pauling principle catalysis , 1983 .

[2]  Plamen Atanassov,et al.  Photoregulation of Mass Transport through a Photoresponsive Azobenzene-Modified Nanoporous Membrane , 2004 .

[3]  Vincenzo Balzani,et al.  Molecular logic circuits. , 2003, Chemphyschem : a European journal of chemical physics and physical chemistry.

[4]  Bernadine O. F. McKinney,et al.  Molecular computational elements encode large populations of small objects , 2006, Nature materials.

[5]  Seong Huh,et al.  Organic Functionalization and Morphology Control of Mesoporous Silicas via a Co-Condensation Synthesis Method , 2003 .

[6]  M. Finn,et al.  Click Chemistry: Diverse Chemical Function from a Few Good Reactions. , 2001 .

[7]  J. Fraser Stoddart,et al.  Logic Operations at the Molecular Level. An XOR Gate Based on a Molecular Machine , 1997 .

[8]  J. F. Stoddart,et al.  Mesostructured Silica Supports for Functional Materials and Molecular Machines , 2007 .

[9]  J. S. Beck,et al.  Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism , 1992, Nature.

[10]  Joakim Andréasson,et al.  All-photonic molecular half-adder. , 2006, Journal of the American Chemical Society.

[11]  E. Johansson,et al.  Light-activated functional mesostructured silica , 2008 .

[12]  Brian F. G. Johnson,et al.  Site-Directed Surface Derivatization of MCM-41: Use of High-Resolution Transmission Electron Microscopy and Molecular Recognition for Determining the Position of Functionality within Mesoporous Materials. , 1998, Angewandte Chemie.

[13]  Sang Cheon Lee,et al.  Controlled release of guest molecules from mesoporous silica particles based on a pH-responsive polypseudorotaxane motif. , 2007, Angewandte Chemie.

[14]  Victor S-Y Lin,et al.  Mesoporous silica nanoparticles for intracellular delivery of membrane-impermeable proteins. , 2007, Journal of the American Chemical Society.

[15]  Brian M. Frezza,et al.  Modular multi-level circuits from immobilized DNA-based logic gates. , 2007, Journal of the American Chemical Society.

[16]  J. Steinke,et al.  Catalytic Self-Threading: A New Route for the Synthesis of Polyrotaxanes , 2004 .

[17]  Mark A. Rodriguez,et al.  Synthesis and crystallographic structure of a novel photoresponsive azobenzene-containing organosilane. , 2003, Chemical communications.

[18]  J. F. Stoddart,et al.  pH-responsive supramolecular nanovalves based on cucurbit[6]uril pseudorotaxanes. , 2008, Angewandte Chemie.

[19]  Jeffrey I. Zink,et al.  Photo-Driven Expulsion of Molecules from Mesostructured Silica Nanoparticles , 2007 .

[20]  M. Vallet‐Regí,et al.  A New Property of MCM-41: Drug Delivery System , 2001 .

[21]  Fritz Vögtle,et al.  Photoisomerization of azobenzene derivatives in nanostructured silica. , 2006, The journal of physical chemistry. B.

[22]  William R. Dichtel,et al.  Enzyme-responsive snap-top covered silica nanocontainers. , 2008, Journal of the American Chemical Society.

[23]  C. McCoy,et al.  A molecular photoionic AND gate based on fluorescent signalling , 1993, Nature.

[24]  R. Behrend,et al.  I. Ueber Condensationsproducte aus Glycoluril und Formaldehyd , 1905 .

[25]  Vincenzo Balzani,et al.  Controlled disassembling of self-assembling systems: Toward artificial molecular-level devices and machines , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Jeffrey I Zink,et al.  Multiply doped nanostructured silicate sol-gel thin films: spatial segregation of dopants, energy transfer, and distance measurements. , 2005, Journal of the American Chemical Society.

[27]  Cari D. Pentecost,et al.  Construction of a pH-driven supramolecular nanovalve. , 2006, Organic letters.

[28]  J. Rosenholm,et al.  Hyperbranching Surface Polymerization as a Tool for Preferential Functionalization of the Outer Surface of Mesoporous Silica , 2008 .

[29]  Yingchun Zhu,et al.  Installing dynamic molecular photomechanics in mesopores: a multifunctional controlled-release nanosystem. , 2007, Angewandte Chemie.

[30]  A. P. de Silva,et al.  Molecular logic and computing. , 2007, Nature nanotechnology.

[31]  Jeffrey I. Zink,et al.  Versatile Supramolecular Nanovalves Reconfigured for Light Activation , 2007 .

[32]  D. Tuncel,et al.  pH-Triggered dethreading-rethreading and switching of cucurbit[6]uril on bistable [3]pseudorotaxanes and [3]rotaxanes. , 2008, Chemistry.

[33]  C. Brinker,et al.  Self-directed assembly of photoactive hybrid silicates derived from an azobenzene-bridged silsesquioxane. , 2002, Journal of the American Chemical Society.

[34]  J. F. Stoddart,et al.  Design and optimization of molecular nanovalves based on redox-switchable bistable rotaxanes. , 2007, Journal of the American Chemical Society.

[35]  María Vallet-Regí,et al.  Confinement and controlled release of bisphosphonates on ordered mesoporous silica-based materials. , 2006, Journal of the American Chemical Society.

[36]  Lyle Isaacs,et al.  The cucurbit[n]uril family. , 2005, Angewandte Chemie.

[37]  Kentaro Yamaguchi,et al.  Rotaxane-based molecular switch with fluorescence signaling , 2000 .

[38]  Ying-Bing Jiang,et al.  Photoresponsive nanocomposite formed by self-assembly of an azobenzene-modified silane. , 2003, Angewandte Chemie.

[39]  Kimoon Kim Mechanically interlocked molecules incorporating cucurbituril and their supramolecular assemblies. , 2002, Chemical Society reviews.

[40]  Françisco M Raymo,et al.  All-optical processing with molecular switches , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[41]  J. Steinke,et al.  The synthesis of [2], [3] and [4]rotaxanes and semirotaxanes. , 2002, Chemical communications.

[42]  Hsian-Rong Tseng,et al.  An operational supramolecular nanovalve. , 2004, Journal of the American Chemical Society.

[43]  Jeffrey I Zink,et al.  Light-activated nanoimpeller-controlled drug release in cancer cells. , 2008, Small.

[44]  Victor S-Y Lin,et al.  A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. , 2003, Journal of the American Chemical Society.

[45]  L M Adleman,et al.  Molecular computation of solutions to combinatorial problems. , 1994, Science.

[46]  J. Fraser Stoddart,et al.  Supramolecular nanovalves controlled by proton abstraction and competitive binding , 2006 .

[47]  J. Steinke,et al.  Catalytically self-threading polyrotaxanes , 1999 .

[48]  Hsian-Rong Tseng,et al.  A reversible molecular valve. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[49]  W. L. Mock,et al.  A cucurbituril-based molecular switch , 1990 .

[50]  Niveen M. Khashab,et al.  Light-operated mechanized nanoparticles. , 2009, Journal of the American Chemical Society.

[51]  Masahiro Fujiwara,et al.  Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica , 2003, Nature.