Structural controls on Quaternary depocentres within the Chotts Trough region of southern Tunisia

Abstract The Chotts Trough of southern Tunisia is a sedimentary basin that lies immediately north of the Saharan platform. Within this basin there exist several structurally controlled depocentres, which were created by Miocene to Early Pleistocene compression associated with the Atlas orogeny. One of these depocentres, the Chott Djerid basin, has an average Quaternary subsidence rate of 0.01–0.27 mm yr 1 . Additional structural features within the Chotts Trough include east-west trending anticlines and synclines, at least some of which are controlled by east-west striking subsurface faults and northwest striking right-lateral strike-slip faults. Present movement along the northwest striking faults is a direct consequence of the Africa-Europe collision. The northwest striking faults and the east-west striking faults have cut the Chotts Trough into numerous smaller structural blocks, which experience different rates of subsidence. For the Quaternary, subsidence is caused by local extension associated with movement along the various strike-slip faults.

[1]  A. Tibaldi,et al.  Eocene simple shear and plio-quaternary pure-shear folding in the Central-Eastern Algerian Atlas , 1990 .

[2]  K. Schäfer Palaeo- and Recent Stress Fields in Tunisia and Libya from the Cenozoic Structural Bearing , 1980 .

[3]  J. Tchalenko Similarities between Shear Zones of Different Magnitudes , 1970 .

[4]  C. Domergue Sud et extreme-sud Tunisiens , 1952 .

[5]  H. Philip,et al.  APPROCHE SISMOTECTONIQUE DES CARACTERES DE LA SISMICITE EN TUNISIE (SEISMOTECTONIC APPROACH TO TUNISIA SEISMICITY CRITERIA) , 1994 .

[6]  Alan Smith,et al.  Some Boundary Conditions for the Evolution of the Mediterranean Region , 1985 .

[7]  Alessandro Tibaldi,et al.  Computer processing of satellite data for geostructural zoning of a collisional boundary, significance and field checks: The example of Tunisia , 1988 .

[8]  M. Boccaletti,et al.  First order kinematic elements in Tunisia and the Pelagian block , 1990 .

[9]  P. F. Burollet,et al.  Structures and tectonics of Tunisia , 1991 .

[10]  Peter Molnar,et al.  Slip-line field theory and large-scale continental tectonics , 1976, Nature.

[11]  F. Zargouni Style et chronologie des déformations des structures de l'Atlas tunisien méridional. Evolution récente de l'accident Sud-atlasique , 1984 .

[12]  F. Gasse,et al.  Two high levels of continental waters in the southern Tunisian chotts at about 90 and 150 ka , 1989 .

[13]  A. Şengör Collision of irregular continental margins: Implications for foreland deformation of Alpine-type orogens , 1976 .

[14]  H. Philip Plio-Quaternary evolution of the stress field in Mediterranean zones of subduction and collision , 1987 .

[15]  D. Stanley,et al.  Geological Evolution of the Mediterranean Basin , 1985 .

[16]  H. Theodoor Verstappen,et al.  Remote sensing for resources development and environmental management : proceedings of the Seventh International Symposium on Remote Sensing for Resources Development and Environmental Management, ISPRS Commission VII, Enschede, 25-29 August 1986 , 1986 .

[17]  P. Molnar,et al.  Cenozoic Tectonics of Asia: Effects of a Continental Collision: Features of recent continental tectonics in Asia can be interpreted as results of the India-Eurasia collision. , 1975, Science.

[18]  F. Gasse,et al.  PALHYDAF (Palaeohydrology in Africa) program: objectives, methods, major results , 1991 .

[19]  J. Delteil,et al.  Nouvelles donnees sur l'evolution tectonique de la chaine de Gafsa , 1990 .

[20]  M. Hfaiedh,et al.  Le séisme du 7 novembre 1989 à Metlaoui (Tunisie méridionale) : une tectonique active en compression , 1993 .

[21]  C. W. Mitchell,et al.  Spring mounds in southern Tunisia , 1987, Geological Society, London, Special Publications.

[22]  N. B. Ayed,et al.  Mécanismes et signification structurale du plissement dans les chaînes des Chotts (Tunisie méridionale). Analogie avec les plis associés au décrochement E-W de Sbiba (Tunisie centrale) , 1992 .

[23]  C. Marino,et al.  Use of Landsat and Seasat data as a tool in kinematic analysis , 1988 .

[24]  F. Zargouni,et al.  Rôle des couloirs de cisaillement de Gafsa et de Negrine-Tozeur dans la structuration du faisceau des plis des Chott, éléments de l'accident sud-atlasique , 1985 .

[25]  W. Bishop Geology of Tunisia and Adjacent Parts of Algeria and Libya , 1975 .

[26]  J. Letouzey,et al.  Paleo-stress fields around the Mediterranean since the Mesozoic derived from microtectonics; comparisons with plate tectonic data , 1980 .

[27]  Nurit-Hildebrand-Mittlefehldt Deformation near a fault termination, part I: A fault in a clay experiment , 1979 .

[28]  D. Kinsman Modes of Formation, Sedimentary Associations, and Diagnostic Features of Shallow-Water and Supratidal Evaporites , 1968 .

[29]  M. Boccaletti,et al.  THE RECENT (MIOCENE‐QUATERNARY) REGMATIC SYSTEM OF THE WESTERN MEDITERRANEAN REGION: A New Model of Ensialic Geodynamic Evolution, in a Context of Plastic/Rigid Deformation , 1982 .

[30]  A. Jones,et al.  Remote sensing of sediment transfer processes in playa basins , 1987, Geological Society Special Publication.

[31]  K. White Geomorphological Analysis of Piedmont Landforms in the Tunisian Southern Atlas Using Ground Data and Satellite Imagery , 1991 .

[32]  P. Burollet,et al.  Petroleum geology of Tunisia , 1990 .

[33]  G. Castany Paléogéographie, tectonique et orogénèse de la Tunisie , 1952 .