Graph Theory-Based Analysis of the Lymph Node Fibroblastic Reticular Cell Network.

[1]  Burkhard Ludewig,et al.  Topological Small-World Organization of the Fibroblastic Reticular Cell Network Determines Lymph Node Functionality , 2016, PLoS biology.

[2]  Anne L. Fletcher,et al.  Lymph node fibroblastic reticular cells in health and disease , 2015, Nature Reviews Immunology.

[3]  S. Turley,et al.  Fibroblastic Reticular Cells: Organization and Regulation of the T Lymphocyte Life Cycle , 2015, The Journal of Immunology.

[4]  Burkhard Ludewig,et al.  B cell homeostasis and follicle confines are governed by fibroblastic reticular cells , 2014, Nature Immunology.

[5]  Thomas Rülicke,et al.  Maturation of Lymph Node Fibroblastic Reticular Cells from Myofibroblastic Precursors Is Critical for Antiviral Immunity , 2013, Immunity.

[6]  T. Killingback,et al.  Attack Robustness and Centrality of Complex Networks , 2013, PloS one.

[7]  S. Turley,et al.  Stromal and hematopoietic cells in secondary lymphoid organs: partners in immunity , 2013, Immunological reviews.

[8]  Mark Coles,et al.  IL-7-producing stromal cells are critical for lymph node remodeling. , 2012, Blood.

[9]  Ronald N Germain,et al.  The race for the prize: T-cell trafficking strategies for optimal surveillance. , 2012, Blood.

[10]  Paul J. Laurienti,et al.  The Ubiquity of Small-World Networks , 2011, Brain Connect..

[11]  Hans J. Herrmann,et al.  Mitigation of malicious attacks on networks , 2011, Proceedings of the National Academy of Sciences.

[12]  Scott N. Mueller,et al.  Stromal cell contributions to the homeostasis and functionality of the immune system , 2009, Nature Reviews Immunology.

[13]  O. Sporns,et al.  Complex brain networks: graph theoretical analysis of structural and functional systems , 2009, Nature Reviews Neuroscience.

[14]  K. Gurney,et al.  Network ‘Small-World-Ness’: A Quantitative Method for Determining Canonical Network Equivalence , 2008, PloS one.

[15]  B. Hinz,et al.  Fibroblastic reticular cells in lymph nodes regulate the homeostasis of naive T cells , 2007, Nature Immunology.

[16]  Ronald N Germain,et al.  Stromal cell networks regulate lymphocyte entry, migration, and territoriality in lymph nodes. , 2006, Immunity.

[17]  Danielle Smith Bassett,et al.  Small-World Brain Networks , 2006, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[18]  T. Prescott,et al.  The brainstem reticular formation is a small-world, not scale-free, network , 2006, Proceedings of the Royal Society B: Biological Sciences.

[19]  S. L. Wong,et al.  Towards a proteome-scale map of the human protein–protein interaction network , 2005, Nature.

[20]  O. Sporns,et al.  Organization, development and function of complex brain networks , 2004, Trends in Cognitive Sciences.

[21]  Z. Oltvai,et al.  Network biology: understanding the cell's functional organization , 2004, Nature Reviews Genetics.

[22]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[23]  S. Havlin,et al.  Scale-free networks are ultrasmall. , 2002, Physical review letters.

[24]  H. Kitano Systems Biology: A Brief Overview , 2002, Science.

[25]  Roger E Bumgarner,et al.  Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. , 2001, Science.

[26]  S. Strogatz Exploring complex networks , 2001, Nature.

[27]  R. Albert,et al.  The large-scale organization of metabolic networks , 2000, Nature.

[28]  A. Barabasi,et al.  Error and attack tolerance of complex networks , 2000, Nature.

[29]  Cohen,et al.  Resilience of the internet to random breakdowns , 2000, Physical review letters.

[30]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[31]  A. Andrew,et al.  Emergence of Scaling in Random Networks , 1999 .

[32]  B. Bollobás The evolution of random graphs , 1984 .