Nanomaterials for Use in Apta-Assays

[1]  L. Gold,et al.  Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. , 1990, Science.

[2]  J. Szostak,et al.  In vitro selection of RNA molecules that bind specific ligands , 1990, Nature.

[3]  J. Szostak,et al.  Selection in vitro of single-stranded DNA molecules that fold into specific ligand-binding structures , 1992, Nature.

[4]  L. Gold,et al.  High affinity ligands from in vitro selection: complex targets. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[5]  M. Willis,et al.  Diagnostic potential of PhotoSELEX-evolved ssDNA aptamers. , 2000, Journal of biotechnology.

[6]  B. Sullenger,et al.  Generation of species cross-reactive aptamers using "toggle" SELEX. , 2001, Molecular therapy : the journal of the American Society of Gene Therapy.

[7]  D. Alessi,et al.  Bi-functional, Substrate Mimicking RNA Inhibits MSK1-mediated cAMP-response Element-binding Protein Phosphorylation and Reveals Magnesium Ion-dependent Conformational Changes of the Kinase* , 2002, The Journal of Biological Chemistry.

[8]  B. Shen,et al.  Single-stranded DNA aptamers that bind differentiated but not parental cells: subtractive systematic evolution of ligands by exponential enrichment. , 2003, Journal of biotechnology.

[9]  C. Mirkin,et al.  Nanoparticle-Based Bio-Bar Codes for the Ultrasensitive Detection of Proteins , 2003, Science.

[10]  M. Zheng,et al.  DNA-assisted dispersion and separation of carbon nanotubes , 2003, Nature materials.

[11]  A. Heeger,et al.  Beyond superquenching: Hyper-efficient energy transfer from conjugated polymers to gold nanoparticles , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[12]  J. Lis,et al.  Specific SR protein-dependent splicing substrates identified through genomic SELEX. , 2003, Nucleic acids research.

[13]  A. Kopylov,et al.  Combinatorial Chemistry of Nucleic Acids: SELEX , 2000, Molecular Biology.

[14]  P. Burgstaller,et al.  Biostable aptamers with antagonistic properties to the neuropeptide nociceptin/orphanin FQ. , 2004, RNA.

[15]  R. Stoltenburg,et al.  FluMag-SELEX as an advantageous method for DNA aptamer selection , 2005, Analytical and bioanalytical chemistry.

[16]  M. Bowser,et al.  Capillary electrophoresis-SELEX selection of aptamers with affinity for HIV-1 reverse transcriptase. , 2005, Analytical chemistry.

[17]  D. Shangguan,et al.  Aptamers evolved from live cells as effective molecular probes for cancer study , 2006, Proceedings of the National Academy of Sciences.

[18]  Yoshikazu Nakamura,et al.  Selection of RNA aptamers against recombinant transforming growth factor-beta type III receptor displayed on cell surface. , 2006, Biochimie.

[19]  X. Le,et al.  Selection and analytical applications of aptamers , 2006 .

[20]  Joshua E. Smith,et al.  Bioconjugated silica-coated nanoparticles for bioseparation and bioanalysis , 2006 .

[21]  L. Forró,et al.  Cellular toxicity of carbon-based nanomaterials. , 2006, Nano letters.

[22]  Chengyou Liu,et al.  Selective determination of cysteine by resonance light scattering technique based on self-assembly of gold nanoparticles. , 2006, Analytical biochemistry.

[23]  F. Luo,et al.  Aptamer from whole-bacterium SELEX as new therapeutic reagent against virulent Mycobacterium tuberculosis. , 2007, Biochemical and biophysical research communications.

[24]  A. Seifalian,et al.  Biological applications of quantum dots. , 2007, Biomaterials.

[25]  Gerhard Ziemer,et al.  CELL-SELEX: Novel Perspectives of Aptamer-Based Therapeutics , 2008, International journal of molecular sciences.

[26]  J. M. Healy,et al.  Complex target SELEX. , 2008, Accounts of chemical research.

[27]  I. Willner,et al.  Semiconductor quantum dots for bioanalysis. , 2008, Angewandte Chemie.

[28]  C. Robic,et al.  Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. , 2008, Chemical reviews.

[29]  J. Vörös,et al.  Electrochemical Biosensors - Sensor Principles and Architectures , 2008 .

[30]  A. Heeger,et al.  Micromagnetic selection of aptamers in microfluidic channels , 2009, Proceedings of the National Academy of Sciences.

[31]  Chun-Yang Zhang,et al.  Single quantum-dot-based aptameric nanosensor for cocaine. , 2009, Analytical chemistry.

[32]  M. Estévez,et al.  Using aptamer-conjugated fluorescence resonance energy transfer nanoparticles for multiplexed cancer cell monitoring. , 2009, Analytical chemistry.

[33]  Lingxin Chen,et al.  Nanomaterial-assisted aptamers for optical sensing. , 2010, Biosensors & bioelectronics.

[34]  R. Ruoff,et al.  Graphene and Graphene Oxide: Synthesis, Properties, and Applications , 2010, Advanced materials.

[35]  D. Shangguan,et al.  Development of DNA aptamers using Cell-SELEX , 2010, Nature Protocols.

[36]  Jian-hui Jiang,et al.  Graphene fluorescence resonance energy transfer aptasensor for the thrombin detection. , 2010, Analytical chemistry.

[37]  N. Khlebtsov,et al.  Gold Nanoparticles in Biology and Medicine: Recent Advances and Prospects , 2011, Acta naturae.

[38]  E. Wang,et al.  PVP-coated graphene oxide for selective determination of ochratoxin A via quenching fluorescence of free aptamer. , 2011, Biosensors & bioelectronics.

[39]  Carlos D. Garcia,et al.  Recent applications of carbon-based nanomaterials in analytical chemistry: critical review. , 2011, Analytica chimica acta.

[40]  Jun‐Jie Zhu,et al.  Aptamer-quantum dots conjugates-based ultrasensitive competitive electrochemical cytosensor for the detection of tumor cell. , 2011, Talanta.

[41]  Tao Chen,et al.  Aptamer-conjugated nanomaterials for bioanalysis and biotechnology applications. , 2011, Nanoscale.

[42]  E. Wang,et al.  Single-walled carbon nanotubes based quenching of free FAM-aptamer for selective determination of ochratoxin A. , 2011, Talanta.

[43]  K. Yong,et al.  A Review on Functionalized Gold Nanoparticles for Biosensing Applications , 2011 .

[44]  X. Qu,et al.  A graphene functionalized electrochemical aptasensor for selective label-free detection of cancer cells. , 2011, Biomaterials.

[45]  Min Han,et al.  A sensitive electrochemical aptasensor based on water soluble CdSe quantum dots (QDs) for thrombin determination , 2011 .

[46]  Lei Guo,et al.  A Conjugated Aptamer-Gold Nanoparticle Fluorescent Probe for Highly Sensitive Detection of rHuEPO-α , 2011, Sensors.

[47]  Jian-hui Jiang,et al.  Aptamer-conjugated nanomaterials and their applications. , 2011, Advanced drug delivery reviews.

[48]  S. Yao,et al.  Ultrasensitive electrochemical aptasensor for thrombin based on the amplification of aptamer-AuNPs-HRP conjugates. , 2011, Biosensors & bioelectronics.

[49]  J. Tominaga,et al.  Assays for aptamer-based platforms. , 2012, Biosensors & bioelectronics.

[50]  Yi Lin,et al.  A graphene oxide-based fluorescent aptasensor for the turn-on detection of epithelial tumor marker mucin 1. , 2012, Nanoscale.

[51]  A. Elaissari,et al.  Silica-based nanoparticles for biomedical applications. , 2012, Drug discovery today.

[52]  Guonan Chen,et al.  An aptamer-based fluorescence biosensor for multiplex detection using unmodified gold nanoparticles. , 2012, Chemical communications.

[53]  Wen-he Wu,et al.  Aptasensors for rapid detection of Escherichia coli O157:H7 and Salmonella typhimurium , 2012, Nanoscale Research Letters.

[54]  Y. Hsiao,et al.  Facile synthesis of highly emissive carbon dots from pyrolysis of glycerol; gram scale production of carbon dots/mSiO2 for cell imaging and drug release , 2012 .

[55]  Duyang Gao,et al.  Cation exchange in aptamer-conjugated CdSe nanoclusters: a novel fluorescence signal amplification for cancer cell detection. , 2012, Chemical communications.

[56]  I. Boyaci,et al.  Attomole sensitivity of staphylococcal enterotoxin B detection using an aptamer-modified surface-enhanced Raman scattering probe. , 2012, Analytical chemistry.

[57]  Dehong Hu,et al.  A universal quantum dots-aptamer probe for efficient cancer detection and targeted imaging. , 2012, Journal of nanoscience and nanotechnology.

[58]  Zhouping Wang,et al.  Gold Nanoparticle-Based Fluorescence Resonance Energy Transfer Aptasensor for Ochratoxin A Detection , 2012 .

[59]  Saber M. Hussain,et al.  Novel Platform Development Using an Assembly of Carbon Nanotube, Nanogold and Immobilized RNA Capture Element towards Rapid, Selective Sensing of Bacteria , 2012, Sensors.

[60]  Da Chen,et al.  Graphene oxide: preparation, functionalization, and electrochemical applications. , 2012, Chemical reviews.

[61]  Y. Kim,et al.  A simple colorimetric assay for the detection of metal ions based on the peroxidase-like activity of magnetic nanoparticles , 2013 .

[62]  D. Pang,et al.  MUC-1 aptamer-conjugated dye-doped silica nanoparticles for MCF-7 cells detection. , 2013, Biomaterials.

[63]  Zhouping Wang,et al.  Selection and characterization of aptamers against Salmonella typhimurium using whole-bacterium Systemic Evolution of Ligands by Exponential Enrichment (SELEX). , 2013, Journal of agricultural and food chemistry.

[64]  Byeong‐Su Kim,et al.  Highly Tunable Aptasensing Microarrays with Graphene Oxide Multilayers , 2013, Scientific Reports.

[65]  Yan Shi,et al.  Fluorescent sensing of cocaine based on a structure switching aptamer, gold nanoparticles and graphene oxide. , 2013, The Analyst.

[66]  Cheng Yang,et al.  Recent Advances and Achievements in Nanomaterial-Based, and Structure Switchable Aptasensing Platforms for Ochratoxin A Detection , 2013, Sensors.

[67]  Ming Yang,et al.  Highly Specific and Cost-Efficient Detection of Salmonella Paratyphi A Combining Aptamers with Single-Walled Carbon Nanotubes , 2013, Sensors.

[68]  Chii-Wann Lin,et al.  Aptamer-based colorimetric detection of platelet-derived growth factor using unmodified gold nanoparticles. , 2013, Biosensors & bioelectronics.

[69]  Yuehe Lin,et al.  Nanomaterials for bio-functionalized electrodes: recent trends. , 2013, Journal of materials chemistry. B.

[70]  Wei Wen,et al.  Novel electrochemical aptamer biosensor based on gold nanoparticles signal amplification for the detection of carcinoembryonic antigen , 2013 .

[71]  J. Nam,et al.  Electrochemical detection of HER2 using single stranded DNA aptamer modified gold nanoparticles electrode , 2013 .

[72]  L. Jaykus,et al.  Nucleic acid aptamers for capture and detection of Listeria spp. , 2013, Journal of biotechnology.

[73]  W. Yong,et al.  Aptamer and Its Potential Applications for Food Safety , 2014, Critical reviews in food science and nutrition.

[74]  Shihua Wang,et al.  A fluorescent aptasensor based on DNA-scaffolded silver-nanocluster for ochratoxin A detection. , 2014, Biosensors & bioelectronics.

[75]  Jinghua Yu,et al.  Aptamer-Based electrochemiluminescent detection of MCF-7 cancer cells based on carbon quantum dots coated mesoporous silica nanoparticles , 2014 .

[76]  Zhouping Wang,et al.  An aptamer-based electrochemical biosensor for the detection of Salmonella. , 2014, Journal of microbiological methods.

[77]  L. Wang,et al.  A visual detection method for Salmonella Typhimurium based on aptamer recognition and nanogold labeling , 2014 .

[78]  Kemin Wang,et al.  A versatile activatable fluorescence probing platform for cancer cells in vitro and in vivo based on self-assembled aptamer/carbon nanotube ensembles. , 2014, Analytical chemistry.

[79]  Wei Wen,et al.  Novel electrochemical aptamer biosensor based on an enzyme-gold nanoparticle dual label for the ultrasensitive detection of epithelial tumour marker MUC1. , 2014, Biosensors & bioelectronics.

[80]  J. Robbens,et al.  Carbon nanotubes based electrochemical aptasensing platform for the detection of hydroxylated polychlorinated biphenyl in human blood serum. , 2014, Biosensors & bioelectronics.

[81]  Young-Pil Kim,et al.  Detection and Characterization of Cancer Cells and Pathogenic Bacteria Using Aptamer-Based Nano-Conjugates , 2014, Sensors.

[82]  L. Deng,et al.  Fluorescent aptasensor for the determination of Salmonella typhimurium based on a graphene oxide platform , 2014, Microchimica Acta.

[83]  Zhouping Wang,et al.  Simultaneous aptasensor for multiplex pathogenic bacteria detection based on multicolor upconversion nanoparticles labels. , 2014, Analytical chemistry.

[84]  Lingwen Zeng,et al.  A simple aptamer biosensor for Salmonellae enteritidis based on fluorescence-switch signaling graphene oxide , 2014 .

[85]  Zhouping Wang,et al.  A sensitive gold nanoparticle-based colorimetric aptasensor for Staphylococcus aureus. , 2014, Talanta.

[86]  Y. Zu,et al.  Oligonucleotide Aptamers: New Tools for Targeted Cancer Therapy , 2014, Molecular therapy. Nucleic acids.

[87]  Yanbin Li,et al.  An electrochemical aptasensor based on gold nanoparticles dotted graphene modified glassy carbon electrode for label-free detection of bisphenol A in milk samples. , 2014, Food chemistry.

[88]  P. Yadava,et al.  Nucleic Acid Aptamers: Research Tools in Disease Diagnostics and Therapeutics , 2014, BioMed research international.

[89]  Kun Wang,et al.  Label-free impedimetric aptasensor for detection of femtomole level acetamiprid using gold nanoparticles decorated multiwalled carbon nanotube-reduced graphene oxide nanoribbon composites. , 2015, Biosensors & bioelectronics.

[90]  G. Marrazza,et al.  A DNA Aptasensor for Electrochemical Detection of Vascular Endothelial Growth Factor. , 2015, Journal of nanoscience and nanotechnology.

[91]  Ali Akbar Asgharinezhad,et al.  Solid phase extraction of Cd(II) and Pb(II) ions based on a novel functionalized Fe3O4@ SiO2 core-shell nanoparticles with the aid of multivariate optimization methodology. , 2015, Materials science & engineering. C, Materials for biological applications.

[92]  A. Grumezescu,et al.  Biomedical applications of gold nanoparticles. , 2016, Current topics in medicinal chemistry.

[93]  M. Darmostuk,et al.  Current approaches in SELEX: An update to aptamer selection technology. , 2015, Biotechnology advances.

[94]  W. Tan,et al.  Aptamers Selected by Cell-SELEX for Theranostics , 2015 .

[95]  G. Pastorin,et al.  Carbon-Based Nanomaterials for Targeted Drug Delivery and Imaging , 2015 .

[96]  Xiaoli Qin,et al.  A novel electrochemical aptasensor for ultrasensitive detection of kanamycin based on MWCNTs-HMIMPF6 and nanoporous PtTi alloy. , 2015, Biosensors & bioelectronics.

[97]  Zhouping Wang,et al.  Aptamer-based fluorescence biosensor for chloramphenicol determination using upconversion nanoparticles , 2015 .

[98]  Richa Sharma,et al.  Recent advances in nanoparticle based aptasensors for food contaminants. , 2015, Biosensors & bioelectronics.

[99]  Cheng Yang,et al.  Recent trends in carbon nanomaterial-based electrochemical sensors for biomolecules: A review. , 2015, Analytica chimica acta.

[100]  P. Nahar,et al.  Development of a label-free gold nanoparticle-based colorimetric aptasensor for detection of human estrogen receptor alpha , 2015, Analytical and Bioanalytical Chemistry.

[101]  Ronghui Wang,et al.  A Fluorescent Aptasensor Coupled with Nanobead-Based Immunomagnetic Separation for Simultaneous Detection of Four Foodborne Pathogenic Bacteria , 2015 .

[102]  Ahad Mokhtarzadeh,et al.  Nanomaterial-based cocaine aptasensors. , 2015, Biosensors & bioelectronics.

[103]  V. Adam,et al.  Quantum dots-fluorescence resonance energy transfer-based nanosensors and their application. , 2015, Biosensors & bioelectronics.

[104]  J. Xiang,et al.  A simple and sensitive impedimetric aptasensor for the detection of tumor markers based on gold nanoparticles signal amplification. , 2015, Talanta.

[105]  M. Ramezani,et al.  A novel colorimetric triple-helix molecular switch aptasensor for ultrasensitive detection of tetracycline. , 2015, Biosensors & bioelectronics.

[106]  Marco G. Casteleijn,et al.  Application of aptamers in diagnostics, drug-delivery and imaging , 2016, Journal of Biosciences.

[107]  Xiaoli Qin,et al.  A novel signal amplification strategy of an electrochemical aptasensor for kanamycin, based on thionine functionalized graphene and hierarchical nanoporous PtCu. , 2016, Biosensors & bioelectronics.

[108]  S. M. Taghdisi,et al.  A selective and sensitive fluorescent aptasensor for detection of kanamycin based on catalytic recycling activity of exonuclease III and gold nanoparticles , 2016 .

[109]  S. M. Taghdisi,et al.  A novel colorimetric sandwich aptasensor based on an indirect competitive enzyme-free method for ultrasensitive detection of chloramphenicol. , 2016, Biosensors & bioelectronics.

[110]  Nurul Hanun Ahmad Raston,et al.  Aptamer-based nanobiosensors. , 2016, Biosensors & bioelectronics.

[111]  S. M. Taghdisi,et al.  Nanoparticles application in high sensitive aptasensor design , 2016 .

[112]  W. Tan,et al.  Aptamer-assembled nanomaterials for fluorescent sensing and imaging , 2017 .

[113]  Jose C. Bonilla,et al.  Applications of quantum dots in Food Science and biology , 2016 .

[114]  M. Ramezani,et al.  Two dimension (2-D) graphene-based nanomaterials as signal amplification elements in electrochemical microfluidic immune-devices: Recent advances. , 2016, Materials science & engineering. C, Materials for biological applications.

[115]  Shenshan Zhan,et al.  A label-free colorimetric progesterone aptasensor based on the aggregation of gold nanoparticles , 2016, Microchimica Acta.

[116]  T. Stenström,et al.  Novel aptamer-linked nanoconjugate approach for detection of waterborne bacterial pathogens: an update , 2016, Journal of Nanoparticle Research.

[117]  S. M. Taghdisi,et al.  A novel fluorescent aptasensor based on gold and silica nanoparticles for the ultrasensitive detection of ochratoxin A. , 2016, Nanoscale.

[118]  Feng Ding,et al.  GR–Fe3O4NPs and PEDOT–AuNPs composite based electrochemical aptasensor for the sensitive detection of penicillin , 2016 .

[119]  H. Heli,et al.  Label-free electrochemical aptasensing of the human prostate-specific antigen using gold nanospears. , 2016, Talanta.

[120]  M. Ramezani,et al.  Aptamers as smart ligands for nano-carriers targeting , 2016 .

[121]  Marit Nilsen-Hamilton,et al.  Aptamers in analytics. , 2016, The Analyst.

[122]  Hung-Wen Li,et al.  Biomedical Applications of DNA‐Conjugated Gold Nanoparticles , 2016, Chembiochem : a European journal of chemical biology.

[123]  M. Hashemi,et al.  Nano-materials for use in sensing of salmonella infections: Recent advances. , 2017, Biosensors & bioelectronics.

[124]  Song Zhang,et al.  A label-free and high-efficient GO-based aptasensor for cancer cells based on cyclic enzymatic signal amplification. , 2017, Biosensors & bioelectronics.

[125]  M. Ramezani,et al.  Acute toxicity of functionalized single wall carbon nanotubes: A biochemical, histopathologic and proteomics approach. , 2017, Chemico-biological interactions.

[126]  M. de la Guardia,et al.  Anti-bacterial activity of graphene oxide as a new weapon nanomaterial to combat multidrug-resistance bacteria. , 2017, Materials science & engineering. C, Materials for biological applications.

[127]  M. Guardia,et al.  Recent advances in Nanomaterial-mediated Bio and immune sensors for detection of aflatoxin in food products , 2017 .

[128]  A. Mokhtarzadeh,et al.  Magnetic Mesoporous Silica/Chitosan/Polyproline: A Novel Nanocomposite Toward Sensing of Some Clinically Relevant Biomolecules , 2017 .

[129]  C. Reinemann,et al.  A joint action of aptamers and gold nanoparticles chemically trapped on a glassy carbon support for the electrochemical sensing of ofloxacin , 2017 .

[130]  Y. Ying,et al.  Recent advances in nanomaterial-based biosensors for antibiotics detection. , 2017, Biosensors & bioelectronics.

[131]  Behzad Baradaran,et al.  Nanomaterial-based biosensors for detection of pathogenic virus , 2017, TrAC Trends in Analytical Chemistry.

[132]  Zhouping Wang,et al.  A novel aptasensor for the colorimetric detection of S. typhimurium based on gold nanoparticles. , 2017, International journal of food microbiology.

[133]  J. Mohammadi,et al.  Proline dehydrogenase-entrapped mesoporous magnetic silica nanomaterial for electrochemical biosensing of L-proline in biological fluids. , 2017, Enzyme and microbial technology.

[134]  A. Mokhtarzadeh,et al.  Title: Ultrasensitive electrochemical immunosensing of tumor suppressor protein p53 in unprocessed human plasma and cell lysates using a novel nanocomposite based on poly-cysteine/graphene quantum dots/gold nanoparticle , 2017 .

[135]  Behzad Baradaran,et al.  Recent trends in rapid detection of influenza infections by bio and nanobiosensor , 2018 .

[136]  A. Mokhtarzadeh,et al.  Aptamer based assay of plated-derived grow factor in unprocessed human plasma sample and MCF-7 breast cancer cell lysates using gold nanoparticle supported α-cyclodextrin. , 2018, International journal of biological macromolecules.