The primes contain arbitrarily long polynomial progressions

We establish the existence of infinitely many polynomial progressions in the primes; more precisely, given any integer-valued polynomials P1, …, Pk ∈ Z[m] in one unknown m with P1(0) = … = Pk(0) = 0, and given any ε > 0, we show that there are infinitely many integers x and m, with $1 \leqslant m \leqslant x^\varepsilon$, such that x + P1(m), …, x + Pk(m) are simultaneously prime. The arguments are based on those in [18], which treated the linear case Pj = (j − 1)m and ε = 1; the main new features are a localization of the shift parameters (and the attendant Gowers norm objects) to both coarse and fine scales, the use of PET induction to linearize the polynomial averaging, and some elementary estimates for the number of points over finite fields in certain algebraic varieties.

[1]  Kenneth B. Huber Department of Mathematics , 1894 .

[2]  P. Varnavides,et al.  On Certain Sets of Positive Density , 1959 .

[3]  R. Horn,et al.  A heuristic asymptotic formula concerning the distribution of prime numbers , 1962 .

[4]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[5]  P. Deligne La conjecture de Weil. I , 1974 .

[6]  E. Szemerédi On sets of integers containing k elements in arithmetic progression , 1975 .

[7]  H. Furstenberg Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions , 1977 .

[8]  A. SARICOZY ON DIFFERENCE SETS OF SEQUENCES OF INTEGERS . III , 1978 .

[9]  A. Sárközy,et al.  On difference sets of sequences of integers. III , 1978 .

[10]  H. Furstenberg,et al.  An ergodic Szemerédi theorem for commuting transformations , 1978 .

[11]  A. Lohmann,et al.  Triple correlations , 1984, Proceedings of the IEEE.

[12]  D. R. Heath-Brown,et al.  The Theory of the Riemann Zeta-Function , 1987 .

[13]  V. Bergelson Weakly mixing PET , 1987, Ergodic Theory and Dynamical Systems.

[14]  Endre Szemerédi,et al.  On sets of natural numbers whose difference set contains no squares , 1988 .

[15]  Imre Z. Ruzsa,et al.  An analog of Freiman's theorem in groups , 1993 .

[16]  E. Szemerédi,et al.  Difference sets without κ-th powers , 1994 .

[17]  Olivier Ramaré,et al.  On Šnirel'man's constant , 1995 .

[18]  Vitaly Bergelson,et al.  Polynomial extensions of van der Waerden’s and Szemerédi’s theorems , 1996 .

[19]  Peter March,et al.  Convergence in ergodic theory and probability , 1996 .

[20]  Noga Alon Combinatorial Nullstellensatz , 1999, Combinatorics, Probability and Computing.

[21]  D. Goldston,et al.  Higher correlations of divisor sums related to primes I: triple correlations , 2001, math/0111212.

[22]  W. T. Gowers,et al.  A new proof of Szemerédi's theorem , 2001 .

[23]  W. T. Gowers,et al.  A NEW PROOF OF SZEMER ´ EDI'S THEOREM , 2001 .

[24]  Imre Z. Ruzsa,et al.  Additive properties of dense subsets of sifted sequences , 2001 .

[25]  Noga Alon,et al.  Recent Trends In Combinatorics: Combinatorial Nullstellensatz , 2001 .

[26]  Ben Green,et al.  On arithmetic structures in dense sets of integers , 2002 .

[27]  S. Slijepčević A polynomial Sárközy-Furstenberg theorem with upper bounds , 2003 .

[28]  Nikos Frantzikinakis,et al.  Polynomial averages converge to the product of integrals , 2004 .

[29]  D. Goldston,et al.  Higher correlations of divisor sums related to primes II: variations of the error term in the prime number theorem , 2004, math/0412366.

[30]  T. Tao,et al.  The primes contain arbitrarily long arithmetic progressions , 2004, math/0404188.

[31]  Bryna Kra,et al.  Convergence of polynomial ergodic averages , 2005 .

[32]  A. Leibman Convergence of multiple ergodic averages along polynomials of several variables , 2005 .

[33]  Terence Tao,et al.  The Gaussian primes contain arbitrarily shaped constellations , 2005 .

[34]  Small Gaps Between Primes I , 2005, math/0504336.

[35]  Progressions arithmétiques dans les nombres premiers , 2005 .

[37]  Julia F. Knight,et al.  Algebraic number fields , 2006 .

[38]  Terence Tao A variant of the hypergraph removal lemma , 2006, J. Comb. Theory, Ser. A.

[39]  Ben Green,et al.  Linear equations in primes , 2006, math/0606088.

[40]  Terence Tao A Quantitative Ergodic Theory Proof of Szemerédi's Theorem , 2006, Electron. J. Comb..

[41]  Progressions arithmétiques dans les nombres premiers, d'après B. Green et T. Tao , 2006, math/0609795.

[42]  Ben Green,et al.  AN INVERSE THEOREM FOR THE GOWERS $U^3(G)$ NORM , 2008, Proceedings of the Edinburgh Mathematical Society.