Difference sets are not multiplicatively closed

We prove that for any finite set A of real numbers its difference set D:=A-A has large product set and quotient set, namely, |DD|, |D/D| \gg |D|^{1+c}, where c>0 is an absolute constant. A similar result takes place in the prime field F_p for sufficiently small D. It gives, in particular, that multiplicative subgroups of size less than p^{4/5-\eps} cannot be represented in the form A-A for any A from F_p.

[1]  Igor E. Shparlinski,et al.  Additive Decompositions of Subgroups of Finite Fields , 2013, SIAM J. Discret. Math..

[2]  Norbert Hegyv'ari,et al.  Explicit constructions of extractors and expanders , 2012, 1206.1146.

[3]  D. Zhelezov Discrete spheres and arithmetic progressions in product sets , 2015, 1510.05411.

[4]  Ilya D. Shkredov,et al.  On Sumsets of Convex Sets , 2011, Comb. Probab. Comput..

[5]  I. Shkredov Differences of subgroups in subgroups , 2015, 1508.03814.

[6]  Oliver Roche-Newton A Short Proof of a Near-Optimal Cardinality Estimate for the Product of a Sum Set , 2015, Symposium on Computational Geometry.

[7]  Misha Rudnev,et al.  Growth Estimates in Positive Characteristic via Collisions , 2015, 1512.06613.

[8]  Orit E. Raz,et al.  Sets with few distinct distances do not have heavy lines , 2015, Discret. Math..

[9]  Ilya D. Shkredov,et al.  On sum sets of sets having small product set , 2015, 1503.05771.

[10]  József Solymosi,et al.  Bounding multiplicative energy by the sumset , 2009 .

[11]  Orit E. Raz,et al.  Polynomials vanishing on grids: The Elekes-Rónyai problem revisited , 2014, SoCG.

[12]  Timothy G. F. Jones New quantitative estimates on the incidence geometry and growth of finite sets , 2013, 1301.4853.

[13]  S. I.D.,et al.  On additive shifts of multiplicative subgroups , 2011, 1102.1172.

[14]  T. Sanders On the Bogolyubov–Ruzsa lemma , 2010, 1011.0107.

[15]  Endre Szemerédi,et al.  Extremal problems in discrete geometry , 1983, Comb..

[16]  Ilya D. Shkredov,et al.  On sums of Szemer\'edi--Trotter sets , 2014, 1410.5662.

[17]  P. Erdös On Sets of Distances of n Points , 1946 .

[19]  On additive decompositions of the set of primitive roots modulo p , 2013 .

[20]  Ryan Schwartz,et al.  Combinatorial applications of the subspace theorem , 2013, Geometry, Structure and Randomness in Combinatorics.

[21]  Terence Tao,et al.  Additive combinatorics , 2007, Cambridge studies in advanced mathematics.

[22]  S. Konyagin,et al.  New results on sum-products in R , 2016, 1602.03473.

[23]  Orit E. Micha József Raz,et al.  Polynomials vanishing on grids: The Elekes-Rónyai problem revisited , 2014 .

[24]  On additive decompositions of the set of quadratic residues modulo p , 2012 .

[25]  Dmitry Zhelezov,et al.  A bound on the multiplicative energy of a sum set and extremal sum-product problems , 2014, 1410.1156.

[26]  T. Schoen,et al.  Higher moments of convolutions , 2011, 1110.2986.

[27]  Yong-Gao Chen,et al.  On sums and products of integers , 1999 .

[28]  I. D. Shkredov On sums of Szemerédi-Trotter sets , 2015 .