Cosmic radio background from primordial black holes at cosmic dawn

The presence of an extra radio background besides the cosmic microwave background has important implications for the observation of the 21-cm signal during the cosmic Dark Ages, Cosmic Dawn, and epoch of Reionization. The strong absorption trough found in the 21-cm global spectrum measured by the EDGES experiment, which has a much greater depth than the standard model prediction, has drawn great interest to this scenario, but more generally it is still of great interest to consider such a cosmic radio background (CRB) in the early Universe. To be effective in affecting the 21-cm signal at early time, such a radio background must be produced by sources which can emit strong radio signals but modest amount of X-rays, so that the gas is not heated up too early. We investigate the scenario that such a radio background is produced by the primordial black holes (PBHs). For PBH with a single mass, we find that if the PBHs' abundance $\log(f_{\rm PBH})$ (ratio of total PBH mass density to total matter density) and mass satisfy the relation $\log(f_{\rm PBH}) \sim -1.8\log(M_\bullet/{\rm M}_{\odot})-3.5$ for $1\,{\rm M}_\odot \lesssim M_\bullet \lesssim 300 {\rm M}_\odot$, and have jet emission, they can generate a CRB required for reproducing the 21-cm absorption signal seen by the EDGES. The accretion rate can be boosted if the PBHs are surrounded by dark matter halos, which permits lower $f_{\rm PBH}$ value to satisfy the EDGES observation. In the latter scenario, since the accretion rate can evolve rapidly during the Cosmic Dawn, the frequency (redshift) and depth of the absorption trough can determine the mass and abundance of the PBHs simultaneously. For absorption trough redshift $\sim$ 17 and depth $\sim -500$ mK, it corresponds to $M_\bullet \sim 1.05\,{\rm M}_{\odot}$ and $f_{\rm PBH}\sim 1.5\times10^{-4}$.

[1]  F. Vito,et al.  Cosmic radiation backgrounds from primordial black holes , 2022, Monthly Notices of the Royal Astronomical Society.

[2]  J. Chluba,et al.  Can accreting primordial black holes explain the excess radio background? , 2022, 2208.03816.

[3]  Xuelei Chen From a small antenna to cosmic dawn , 2022, Nature Astronomy.

[4]  R. Maiolino,et al.  The REACH radiometer for detecting the 21-cm hydrogen signal from redshift z ≈ 7.5–28 , 2022, Nature Astronomy.

[5]  I. Mirabel,et al.  Black holes at cosmic dawn in the redshifted 21cm signal of HI , 2022, New Astronomy Reviews.

[6]  R. Subrahmanyan,et al.  On the detection of a cosmic dawn signal in the radio background , 2021, Nature Astronomy.

[7]  V. Takhistov,et al.  Impacts of Jets and winds from primordial black holes , 2021, Monthly Notices of the Royal Astronomical Society: Letters.

[8]  Yin-Zhe Ma,et al.  21-cm constraints on spinning primordial black holes , 2021, Journal of Cosmology and Astroparticle Physics.

[9]  Girish Kulkarni,et al.  Constraining primordial black holes as dark matter using the global 21-cm signal with X-ray heating and excess radio background , 2021, Journal of Cosmology and Astroparticle Physics.

[10]  Girish Kulkarni,et al.  Background of radio photons from primordial black holes , 2021, 2110.11975.

[11]  M. Krumholz,et al.  The diffuse γ-ray background is dominated by star-forming galaxies , 2021, Nature.

[12]  R. Narayan,et al.  Jets in Magnetically Arrested Hot Accretion Flows: Geometry, Power and Black Hole Spindown , 2021, 2108.12380.

[13]  Xuelei Chen,et al.  Maximum Absorption of the Global 21 cm Spectrum in the Standard Cosmological Model , 2021, 2102.12865.

[14]  A. Green,et al.  Primordial black holes as a dark matter candidate , 2020, Journal of Physics G: Nuclear and Particle Physics.

[15]  Yin-Zhe Ma,et al.  Prospects of future CMB anisotropy probes for primordial black holes , 2020, 2011.12244.

[16]  Xuelei Chen,et al.  Discovering the sky at the longest wavelengths with a lunar orbit array , 2020, Philosophical Transactions of the Royal Society A.

[17]  L. Ho,et al.  Radio Activity of Supermassive Black Holes with Extremely High Accretion Rates , 2020, The Astrophysical Journal.

[18]  N. Triantafyllou,et al.  LIGO/Virgo black holes and dark matter: the effect of spatial clustering , 2020, Journal of Cosmology and Astroparticle Physics.

[19]  K. Jedamzik Primordial black hole dark matter and the LIGO/Virgo observations , 2020, Journal of Cosmology and Astroparticle Physics.

[20]  P. Pani,et al.  Primordial black holes confront LIGO/Virgo data: current situation , 2020, Journal of Cosmology and Astroparticle Physics.

[21]  J. Burns Transformative science from the lunar farside: observations of the dark ages and exoplanetary systems at low radio frequencies , 2020, Philosophical Transactions of the Royal Society A.

[22]  G. Hasinger Illuminating the dark ages: cosmic backgrounds from accretion onto primordial black hole dark matter , 2020, Journal of Cosmology and Astroparticle Physics.

[23]  P. Pani,et al.  The evolution of primordial black holes and their final observable spins , 2020, Journal of Cosmology and Astroparticle Physics.

[24]  C. Byrnes,et al.  Initial clustering and the primordial black hole merger rate , 2019, Journal of Cosmology and Astroparticle Physics.

[25]  Q. Huang,et al.  Distinguishing primordial black holes from astrophysical black holes by Einstein Telescope and Cosmic Explorer , 2019, Journal of Cosmology and Astroparticle Physics.

[26]  R. B. Barreiro,et al.  Planck 2018 results , 2018, Astronomy & Astrophysics.

[27]  E. Ramirez-Ruiz,et al.  Bondi–Hoyle–Lyttleton Accretion onto Star Clusters , 2019, The Astrophysical Journal.

[28]  Boyuan Liu,et al.  Constraining First Star Formation with 21 cm Cosmology , 2019, The Astrophysical Journal.

[29]  M. Raidal,et al.  Formation and evolution of primordial black hole binaries in the early universe , 2018, Journal of Cosmology and Astroparticle Physics.

[30]  G. Ghisellini Blazar jets as the most efficient persistent engines , 2018, Rendiconti Lincei. Scienze Fisiche e Naturali.

[31]  Xuelei Chen,et al.  The Global 21 cm Absorption from Cosmic Dawn with Inhomogeneous Gas Distribution , 2018, The Astrophysical Journal.

[32]  S. Furlanetto,et al.  What does the first highly redshifted 21-cm detection tell us about early galaxies? , 2018, Monthly Notices of the Royal Astronomical Society.

[33]  O. Dor'e,et al.  Modeling the Radio Background from the First Black Holes at Cosmic Dawn: Implications for the 21 cm Absorption Amplitude , 2018, The Astrophysical Journal.

[34]  Alan E. E. Rogers,et al.  An absorption profile centred at 78 megahertz in the sky-averaged spectrum , 2018, Nature.

[35]  Rennan Barkana,et al.  Possible interaction between baryons and dark-matter particles revealed by the first stars , 2018, Nature.

[36]  G. Holder,et al.  Enhanced Global Signal of Neutral Hydrogen Due to Excess Radiation at Cosmic Dawn , 2018, 1802.07432.

[37]  J. Lucey,et al.  The most massive black holes on the Fundamental Plane of black hole accretion , 2017, 1710.10268.

[38]  C. Done,et al.  What powers the most relativistic jets? - II. Flat-spectrum radio quasars , 2017, 1710.00316.

[39]  A. R. Rao,et al.  General Physical Properties of CGRaBS Blazars , 2017, 1711.01292.

[40]  D. Walton,et al.  An elevation of 0.1 light-seconds for the optical jet base in an accreting Galactic black hole system , 2017, 1710.09838.

[41]  D. P. Woody,et al.  Design and characterization of the Large-aperture Experiment to Detect the Dark Age (LEDA) radiometer systems , 2017, 1709.09313.

[42]  M. Raidal,et al.  Gravitational waves from primordial black hole mergers , 2017, 1707.01480.

[43]  Aviad Cohen,et al.  First Results on the Epoch of Reionization from First Light with SARAS 2 , 2017, 1703.06647.

[44]  G. Ghisellini,et al.  The Fermi blazar sequence , 2017, 1702.02571.

[45]  A. Finoguenov,et al.  The Chandra COSMOS Legacy Survey: Energy Spectrum of the Cosmic X-Ray Background and Constraints on Undetected Populations , 2017, 1702.01660.

[46]  G. E. Romero,et al.  Lepto-hadronic model for the broadband emission of Cygnus X-1 , 2015, 1509.08514.

[47]  S. Khochfar,et al.  Can the 21-cm signal probe Population III and II star formation? , 2014, 1405.7385.

[48]  G. Ghisellini,et al.  The power of relativistic jets is larger than the luminosity of their accretion disks , 2014, Nature.

[49]  M. Sikora,et al.  Jet contributions to the broad-band spectrum of Cyg X-1 in the hard state , 2014, 1403.4768.

[50]  R. Narayan,et al.  Hot Accretion Flows Around Black Holes , 2014, 1401.0586.

[51]  C. Done,et al.  What powers the most relativistic jets? - I. BL Lacs , 2013, 1311.4320.

[52]  G. Ghisellini Radiative Processes in High Energy Astrophysics , 2012, 1202.5949.

[53]  F. Yuan,et al.  Radiative efficiency of hot accretion flows , 2012, 1207.3113.

[54]  J. Trump,et al.  Bolometric luminosities and Eddington ratios of X-ray selected active galactic nuclei in the XMM-COSMOS survey , 2012, 1206.2642.

[55]  Princeton,et al.  General relativistic magnetohydrodynamic simulations of magnetically choked accretion flows around black holes , 2012, 1201.4163.

[56]  Abraham Loeb,et al.  21 cm cosmology in the 21st century , 2011, Reports on progress in physics. Physical Society.

[57]  W. Marsden I and J , 2012 .

[58]  Harvard,et al.  Efficient Generation of Jets from Magnetically Arrested Accretion on a Rapidly Spinning Black Hole , 2011, 1108.0412.

[59]  A. Zdziarski The structure of the jet in Cyg X-1 inferred from orbital modulation of the radio emission , 2011, 1105.4291.

[60]  R. Cen,et al.  21cmfast: a fast, seminumerical simulation of the high‐redshift 21‐cm signal , 2010, 1003.3878.

[61]  G. Ghisellini,et al.  General physical properties of bright Fermi blazars , 2009, 0909.0932.

[62]  G. Ghisellini,et al.  Canonical high power blazars , 2009, 0902.0793.

[63]  D. Crenshaw,et al.  RADIO PROPERTIES OF LOW-REDSHIFT BROAD LINE ACTIVE GALACTIC NUCLEI , 2008, 1012.4334.

[64]  A. Ferrara,et al.  The energy cascade from warm dark matter decays , 2008, 0803.0370.

[65]  Ramesh Narayan,et al.  Advection-Dominated Accretion and the Black Hole Event Horizon , 2008, 0803.0322.

[66]  J. Ostriker,et al.  Effect of Primordial Black Holes on the Cosmic Microwave Background and Cosmological Parameter Estimates , 2007, 0709.0524.

[67]  M. Ricotti Bondi Accretion in the Early Universe , 2007, 0706.0864.

[68]  D. Lin,et al.  Gas Accretion by Globular Clusters and Nucleated Dwarf Galaxies and the Formation of the Arches and Quintuplet Clusters , 2007, astro-ph/0703807.

[69]  S. Furlanetto,et al.  Cosmology at low frequencies: The 21 cm transition and the high-redshift Universe , 2006, astro-ph/0608032.

[70]  Xuelei Chen,et al.  The 21 cm Signature of the First Stars , 2006, astro-ph/0605439.

[71]  S. Furlanetto The global 21-centimeter background from high redshifts , 2006, astro-ph/0604040.

[72]  Ran Wang,et al.  The Black Hole Fundamental Plane from a Uniform Sample of Radio and X-Ray-emitting Broad-Line AGNs , 2006, astro-ph/0603514.

[73]  S. Heinz Composition, Collimation, Contamination: The Jet of Cygnus X-1 , 2005, astro-ph/0509777.

[74]  W. Cui,et al.  Radio-X-Ray Correlation and the “Quiescent State” of Black Hole Sources , 2004, astro-ph/0411770.

[75]  Xuelei Chen,et al.  The Spin-Kinetic Temperature Coupling and the Heating Rate due to Lyα Scattering before Reionization: Predictions for 21 Centimeter Emission and Absorption , 2003, astro-ph/0303395.

[76]  A. Maselli,et al.  CRASH: A radiative transfer scheme , 2003, astro-ph/0307117.

[77]  T. D. Matteo,et al.  A Fundamental plane of black hole activity , 2003, astro-ph/0305261.

[78]  R. Sunyaev,et al.  The non-linear dependence of flux on black hole mass and accretion rate in core-dominated jets , 2003, astro-ph/0305252.

[79]  S. White,et al.  The Structure of cold dark matter halos , 1995, astro-ph/9508025.

[80]  E. Bertschinger Self-similar secondary infall and accretion in an Einstein-de Sitter universe , 1985 .

[81]  M. Rees,et al.  The anthropic principle and the structure of the physical world , 1979, Nature.

[82]  H. Bondi,et al.  On spherically symmetrical accretion , 1952 .