Histogram Analysis of Amide Proton Transfer Imaging to Identify Contrast-enhancing Low-Grade Brain Tumor That Mimics High-Grade Tumor: Increased Accuracy of MR Perfusion.

PURPOSE To determine whether histogram analysis of amide proton transfer (APT) imaging provides increased accuracy of magnetic resonance (MR) perfusion imaging for the identification of contrast material-enhancing low-grade tumor (World Health Organization grades 1 and 2) that mimics high-grade tumor (World Health Organization grades 3 and 4). MATERIALS AND METHODS This retrospective study was approved by the institutional review board. Forty-five patients with pathologically proven, solitary, contrast-enhancing tumors were enrolled in this study. APT-derived signal intensity from the calculated APT asymmetry at the offset frequency of 3.5 ppm and normalized cerebral blood volume (nCBV) were measured on solid portions of the tumor by using a 90% histogram cutoff (denoted as APT90 and nCBV90, respectively). The diagnostic performance of the imaging parameters was determined with leave-one-out cross validation. Interobserver agreement was assessed by using the intraclass correlation coefficient. RESULTS APT90 demonstrated a significant difference between contrast-enhancing low-grade and high-grade tumors for both readers (P < .001 for both readers). Compared with nCBV90, adding APT90 significantly improved the area under the receiver operating characteristic curve (AUC) for the identification of contrast-enhancing low-grade tumor from 0.80 to 0.97 for reader 1 (P = .023) and from 0.82 to 0.97 for reader 2 (P = .035), respectively. By using leave-one-out cross-validation, the cross-validated AUC of the combination of nCBV90 and APT90 was 0.95 for reader 1 and 0.96 for reader 2. The intraclass correlation coefficient for the APT90 calculations was 0.89. CONCLUSION Histogram analysis of APT imaging provided increased accuracy of MR perfusion imaging for the identification of contrast-enhancing low-grade tumor that mimics high-grade tumor.

[1]  Jinyuan Zhou,et al.  Practical data acquisition method for human brain tumor amide proton transfer (APT) imaging , 2008, Magnetic resonance in medicine.

[2]  S. Atlas,et al.  Magnetic resonance image–guided proteomics of human glioblastoma multiforme , 2003, Journal of magnetic resonance imaging : JMRI.

[3]  V. L. Doyle,et al.  Metabolic profiles of human brain tumors using quantitative in vivo 1H magnetic resonance spectroscopy , 2003, Magnetic resonance in medicine.

[4]  Namkug Kim,et al.  Recurrent glioblastoma: optimum area under the curve method derived from dynamic contrast-enhanced T1-weighted perfusion MR imaging. , 2013, Radiology.

[5]  G Johnson,et al.  Histogram analysis versus region of interest analysis of dynamic susceptibility contrast perfusion MR imaging data in the grading of cerebral gliomas. , 2007, AJNR. American journal of neuroradiology.

[6]  Jinyuan Zhou,et al.  Amide proton transfer imaging of 9L gliosarcoma and human glioblastoma xenografts , 2008, NMR in biomedicine.

[7]  Peter Bachert,et al.  Quantitative separation of CEST effect from magnetization transfer and spillover effects by Lorentzian-line-fit analysis of z-spectra. , 2011, Journal of magnetic resonance.

[8]  J. Mukherjee,et al.  11C-l-Methionine Positron Emission Tomography in the Clinical Management of Cerebral Gliomas , 2007, Molecular Imaging and Biology.

[9]  N. Hopf,et al.  Contribution of diffusion tensor imaging to delineation of gliomas and glioblastomas , 2004, Journal of magnetic resonance imaging : JMRI.

[10]  Jinyuan Zhou,et al.  Amide proton transfer (APT) contrast for imaging of brain tumors , 2003, Magnetic resonance in medicine.

[11]  Xavier Golay,et al.  Amide proton transfer imaging of human brain tumors at 3T , 2006, Magnetic resonance in medicine.

[12]  T. Mak,et al.  Regulation of cancer cell metabolism , 2011, Nature Reviews Cancer.

[13]  A. Bjørnerud,et al.  Glioma grading by using histogram analysis of blood volume heterogeneity from MR-derived cerebral blood volume maps. , 2008, Radiology.

[14]  Susumu Mori,et al.  Mechanism of magnetization transfer during on‐resonance water saturation. A new approach to detect mobile proteins, peptides, and lipids , 2003, Magnetic resonance in medicine.

[15]  Xuna Zhao,et al.  Three-Dimensional Turbo-Spin-Echo Amide Proton Transfer MR Imaging at 3-Tesla and Its Application to High-Grade Human Brain Tumors , 2013, Molecular Imaging and Biology.

[16]  Nirbhay N. Yadav,et al.  Chemical exchange saturation transfer (CEST): What is in a name and what isn't? , 2011, Magnetic resonance in medicine.

[17]  Jinyuan Zhou,et al.  Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI , 2003, Nature Medicine.

[18]  P. Baraldi,et al.  Multimodal MRI in the characterization of glial neoplasms: the combined role of single-voxel MR spectroscopy, diffusion imaging and echo-planar perfusion imaging , 2007, Neuroradiology.

[19]  Robert M Friedlander,et al.  In vivo chemical exchange saturation transfer imaging allows early detection of a therapeutic response in glioblastoma. , 2014, Neurosurgery.

[20]  Namkug Kim,et al.  Histogram Analysis of Intravoxel Incoherent Motion for Differentiating Recurrent Tumor from Treatment Effect in Patients with Glioblastoma: Initial Clinical Experience , 2014, American Journal of Neuroradiology.

[21]  David C. Alsop,et al.  Contributors to contrast between glioma and brain tissue in chemical exchange saturation transfer sensitive imaging at 3Tesla , 2014, NeuroImage.