Contraction Analysis for a Class of NonDifferentiable Systems with Applications to Stability and Network Synchronization

In this paper we extend to a generic class of piecewise smooth dynamical systems a fundamental tool for the analysis of convergence of smooth dynamical systems: contraction theory. We focus on switched nondifferentiable systems satisfying Caratheodory conditions for the existence and uniqueness of a solution. After generalizing the classical definition of contraction to this class of dynamical systems, we give sufficient conditions for global convergence of their trajectories. The theoretical results are then applied to solve a set of representative problems such as proving global asymptotic stability of switched linear systems, giving conditions for incremental stability of piecewise smooth systems, and analyzing the convergence of networked switched systems.

[1]  Gennady A. Leonov,et al.  Design of Convergent Switched Systems , 2006 .

[2]  Alessandro Astolfi,et al.  Stability of Dynamical Systems - Continuous, Discontinuous, and Discrete Systems (by Michel, A.N. et al.; 2008) [Bookshelf] , 2007, IEEE Control Systems.

[3]  Mario di Bernardo,et al.  A Graphical Approach to Prove Contraction of Nonlinear Circuits and Systems , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[4]  C. Budd,et al.  Review of ”Piecewise-Smooth Dynamical Systems: Theory and Applications by M. di Bernardo, C. Budd, A. Champneys and P. 2008” , 2020 .

[5]  D. C. Lewis Metric Properties of Differential Equations , 1949 .

[6]  Maurizio Porfiri,et al.  Fast Switching Analysis of Linear Switched Systems Using Exponential Splitting , 2008, SIAM J. Control. Optim..

[7]  Mario di Bernardo,et al.  On Contraction of Piecewise Smooth Dynamical Systems , 2011 .

[8]  V. Boichenko,et al.  Dimension theory for ordinary differential equations , 2005 .

[9]  John N. Tsitsiklis,et al.  Parallel and distributed computation , 1989 .

[10]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[11]  Mario di Bernardo,et al.  Global Entrainment of Transcriptional Systems to Periodic Inputs , 2009, PLoS Comput. Biol..

[12]  Murat Arcak,et al.  Certifying spatially uniform behavior in reaction-diffusion PDE and compartmental ODE systems , 2011, Autom..

[13]  G. Dahlquist Stability and error bounds in the numerical integration of ordinary differential equations , 1961 .

[14]  David Angeli,et al.  A Lyapunov approach to incremental stability properties , 2002, IEEE Trans. Autom. Control..

[15]  Nathan van de Wouw,et al.  Convergent discrete-time nonlinear systems: The case of PWA systems , 2008, 2008 American Control Conference.

[16]  David J. W. Simpson,et al.  Bifurcations in Piecewise-Smooth Continuous Systems , 2010 .

[17]  Francesco Bullo,et al.  Contraction theory on Riemannian manifolds , 2014, Syst. Control. Lett..

[18]  P. Hartman On Stability in the Large for Systems of Ordinary Differential Equations , 1961, Canadian Journal of Mathematics.

[19]  Jean-Jacques E. Slotine,et al.  Stable concurrent synchronization in dynamic system networks , 2005, Neural Networks.

[20]  Nathan van de Wouw,et al.  Convergent dynamics, a tribute to Boris Pavlovich Demidovich , 2004, Syst. Control. Lett..

[21]  Nathan van de Wouw,et al.  On convergence properties of piecewise affine systems , 2007, Int. J. Control.

[22]  M. Vidyasagar,et al.  Nonlinear systems analysis (2nd ed.) , 1993 .

[23]  H. Nijmeijer,et al.  Convergent piecewise affine systems: analysis and design Part II: discontinuous case , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[24]  Enrique Ponce,et al.  The continuous matching of two stable linear systems can be unstable , 2006 .

[25]  T. Ström On Logarithmic Norms , 1975 .

[26]  Jean-Jacques E. Slotine,et al.  Compositional Contraction Analysis of Resetting Hybrid Systems , 2006, IEEE Transactions on Automatic Control.

[27]  J. Slotine,et al.  Symmetries, stability, and control in nonlinear systems and networks. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  Eduardo D. Sontag,et al.  Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .

[29]  Rodolphe Sepulchre,et al.  A Differential Lyapunov Framework for Contraction Analysis , 2012, IEEE Transactions on Automatic Control.

[30]  Giovanni Russo,et al.  Global convergence of quorum-sensing networks. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  J. Jouffroy Some ancestors of contraction analysis , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[32]  Mario di Bernardo,et al.  A Contraction Approach to the Hierarchical Analysis and Design of Networked Systems , 2013, IEEE Transactions on Automatic Control.

[33]  J. Cortés Discontinuous dynamical systems , 2008, IEEE Control Systems.

[34]  Mario di Bernardo,et al.  Incremental stability of planar Filippov systems , 2013, 2013 European Control Conference (ECC).

[35]  Jean-Jacques E. Slotine,et al.  On partial contraction analysis for coupled nonlinear oscillators , 2004, Biological Cybernetics.

[36]  Mario di Bernardo,et al.  How to Synchronize Biological Clocks , 2009, J. Comput. Biol..

[37]  Aleksej F. Filippov,et al.  Differential Equations with Discontinuous Righthand Sides , 1988, Mathematics and Its Applications.

[38]  Jean-Jacques E. Slotine,et al.  Nonlinear process control using contraction theory , 2000 .

[39]  Jean-Jacques E. Slotine,et al.  On Contraction Analysis for Non-linear Systems , 1998, Autom..

[40]  V. Latora,et al.  Complex networks: Structure and dynamics , 2006 .

[41]  Mario di Bernardo,et al.  Solving the rendezvous problem for multi-agent systems using contraction theory , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[42]  Daniel Liberzon,et al.  Switching in Systems and Control , 2003, Systems & Control: Foundations & Applications.

[43]  C. A. Desoer,et al.  Nonlinear Systems Analysis , 1978 .

[44]  W. Lohmiller,et al.  Contraction analysis of non-linear distributed systems , 2005 .

[45]  Hai Lin,et al.  Stability and Stabilizability of Switched Linear Systems: A Survey of Recent Results , 2009, IEEE Transactions on Automatic Control.