Desenvolvimento de Ferramentas para Pesquisas em Tecnologias Assistivas Baseadas em Sinais Biológicos

[1]  Cuntai Guan,et al.  A Large Clinical Study on the Ability of Stroke Patients to Use an EEG-Based Motor Imagery Brain-Computer Interface , 2011, Clinical EEG and neuroscience.

[2]  Brendan Z. Allison,et al.  Brain-Computer Interfaces: A Gentle Introduction , 2009 .

[3]  Eduardo Caicedo Bravo,et al.  Adaptive BCI based on software agents , 2014, 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[4]  Lik-Kwan Shark,et al.  EMG Biofeedback Based VR System for Hand Rotation and Grasping Rehabilitation , 2010, 2010 14th International Conference Information Visualisation.

[5]  Christian Cipriani,et al.  Real-time myoelectric control of a multi-fingered hand prosthesis using principal components analysis , 2012, Journal of NeuroEngineering and Rehabilitation.

[6]  Norman I. Badler,et al.  Real-time virtual humans , 1997, Proceedings The Fifth Pacific Conference on Computer Graphics and Applications.

[7]  R. C. Silva,et al.  TECNOLOGIAS PARA CONSTRUÇÃO DE MUNDOS VIRTUAIS: UM COMPARATIVO ENTRE AS OPÇÕES EXISTENTES NO MERCADO , 2012 .

[8]  Carlo J. De Luca,et al.  The Use of Surface Electromyography in Biomechanics , 1997 .

[9]  A. Zwern Virtual reality: state-of-the-art and key challenges , 1995, Proceedings of WESCON'95.

[10]  Othman Omran Khalifa,et al.  EMG signal classification for human computer interaction: a review , 2009 .

[11]  R. Jacob Vogelstein,et al.  WiiEMG: A real-time environment for control of the Wii with surface electromyography , 2010, Proceedings of 2010 IEEE International Symposium on Circuits and Systems.

[12]  Thorsten O. Zander,et al.  Enhancing Human-Computer Interaction with Input from Active and Passive Brain-Computer Interfaces , 2010, Brain-Computer Interfaces.

[13]  Indar Sugiarto,et al.  Optimization Strategy for SSVEP-Based BCI in Spelling Program Application , 2009, 2009 International Conference on Computer Engineering and Technology.

[14]  Chris H. Mullens,et al.  Maximum walking speeds obtained using treadmill and overground robot system in persons with post-stroke hemiplegia , 2012, Journal of NeuroEngineering and Rehabilitation.

[15]  Desney S. Tan,et al.  Brain-Computer Interfaces: Applying our Minds to Human-Computer Interaction , 2010 .

[16]  Constantinos Mavroidis,et al.  Robotic Systems for Gait Rehabilitation , 2014 .

[17]  Catharina Zich,et al.  Mobile EEG and its potential to promote the theory and application of imagery-based motor rehabilitation. , 2014, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[18]  G. McArthur,et al.  Validation of the Emotiv EPOC® EEG gaming system for measuring research quality auditory ERPs , 2013, PeerJ.

[19]  Teodiano Freire Bastos Filho,et al.  An Ethernet sniffer for On-line acquisition of EEG with the BrainNet36® device applied to a BCI , 2014, 5th ISSNIP-IEEE Biosignals and Biorobotics Conference (2014): Biosignals and Robotics for Better and Safer Living (BRC).

[20]  Kajal T. Claypool,et al.  The effects of frame rate and resolution on users playing first person shooter games , 2006, Electronic Imaging.

[21]  Mark T. Bolas,et al.  Open virtual reality , 2013, 2013 IEEE Virtual Reality (VR).

[22]  Huosheng Hu,et al.  Myoelectric control systems - A survey , 2007, Biomed. Signal Process. Control..

[23]  C. Richards,et al.  Potential role of mental practice using motor imagery in neurologic rehabilitation. , 2001, Archives of physical medicine and rehabilitation.

[24]  Gert Pfurtscheller,et al.  Human–Computer Interface Issues in Controlling Virtual Reality With Brain–Computer Interface , 2010, Hum. Comput. Interact..

[25]  W. Penfield,et al.  The Cerebral Cortex of Man: A Clinical Study of Localization of Function , 1968 .

[26]  Vera Kaiser,et al.  Thinking Penguin: Multimodal Brain–Computer Interface Control of a VR Game , 2013, IEEE Transactions on Computational Intelligence and AI in Games.

[27]  Zhang Xia,et al.  EMG-driven computer game for post-stroke rehabilitation , 2010, 2010 IEEE Conference on Robotics, Automation and Mechatronics.

[29]  J. Hakkinen,et al.  Postural stability and sickness symptoms after HMD use , 2002, IEEE International Conference on Systems, Man and Cybernetics.

[30]  Günter Hommel,et al.  A Human--Exoskeleton Interface Utilizing Electromyography , 2008, IEEE Transactions on Robotics.

[31]  Jaime Gómez Gil,et al.  Brain Computer Interfaces, a Review , 2012, Sensors.

[32]  David Salesin,et al.  Comic Chat , 1996, SIGGRAPH.

[33]  Suzanne McDonough,et al.  Interactive computer play in rehabilitation of children with sensorimotor disorders: a systematic review , 2009, Developmental medicine and child neurology.

[34]  Niels Birbaumer,et al.  Brain-computer-interfaces in the rehabilitation of stroke and neurotrauma , 2011 .

[35]  Jeri Fink Cyberseduction: Reality in the Age of Psychotechnology , 1999 .

[36]  Anselmo Frizera,et al.  Identification of low level sEMG signals for individual finger prosthesis , 2014, 5th ISSNIP-IEEE Biosignals and Biorobotics Conference (2014): Biosignals and Robotics for Better and Safer Living (BRC).

[37]  Valer Jurcak,et al.  10/20, 10/10, and 10/5 systems revisited: Their validity as relative head-surface-based positioning systems , 2007, NeuroImage.

[38]  Berthil Borges Longo,et al.  A MULTI-PROPOSAL MOBILE EEG SYSTEM , 2014 .

[39]  S. Debener,et al.  How about taking a low-cost, small, and wireless EEG for a walk? , 2012, Psychophysiology.

[40]  Girijesh Prasad,et al.  Using motor imagery based brain-computer interface for post-stroke rehabilitation , 2009, 2009 4th International IEEE/EMBS Conference on Neural Engineering.

[41]  Ahmet Çakir Computer access for people with disabilities: a human factors approach , 2013, Behav. Inf. Technol..