Elucidating the mechanobiology of malignant brain tumors using a brain matrix-mimetic hyaluronic acid hydrogel platform.

[1]  B. Toole,et al.  Hyaluronate production and removal during corneal development in the chick. , 1971, Developmental biology.

[2]  M. Schwab,et al.  Glioblastoma infiltration into central nervous system tissue in vitro: involvement of a metalloprotease , 1988, The Journal of cell biology.

[3]  N. Peppas,et al.  Correlation between mesh size and equilibrium degree of swelling of polymeric networks. , 1989, Journal of biomedical materials research.

[4]  J. Hubbell,et al.  An RGD spacing of 440 nm is sufficient for integrin alpha V beta 3- mediated fibroblast spreading and 140 nm for focal contact and stress fiber formation , 1991, The Journal of cell biology.

[5]  C. Chauzy,et al.  Hyaluronan and hyaluronectin in the extracellular matrix of human brain tumour stroma. , 1993, European journal of cancer.

[6]  P Aebischer,et al.  Hydrogel-based three-dimensional matrix for neural cells. , 1995, Journal of biomedical materials research.

[7]  J. Mate,et al.  Role of CD44 in the invasiveness of glioblastoma multiforme and the noninvasiveness of meningioma: an immunohistochemistry study. , 1995, Human pathology.

[8]  J. J. Bernstein,et al.  Glioblastoma Cells Do Not Intravasate into Blood Vessels: 124 , 1995, Neurosurgery.

[9]  M. Berens,et al.  Substrates for astrocytoma invasion. , 1995, Neurosurgery.

[10]  G. Pilkington,et al.  Hyaluronic acid/CD44H interaction induces cell detachment and stimulates migration and invasion of human glioma cells in vitro , 1995, International journal of cancer.

[11]  E Ruoslahti,et al.  Brain extracellular matrix. , 1996, Glycobiology.

[12]  J. Yoshida,et al.  Suppression of CD44 expression decreases migration and invasion of human glioma cells , 1996, International journal of cancer.

[13]  C. Bowman,et al.  Mechanical properties of hydrogels and their experimental determination. , 1996, Biomaterials.

[14]  B. Radotra,et al.  GLIOMA INVASION IN VITRO IS MEDIATED BY CD44–HYALURONAN INTERACTIONS , 1997, The Journal of pathology.

[15]  C. S. Chen,et al.  Geometric control of cell life and death. , 1997, Science.

[16]  M. Radice,et al.  Semisynthetic resorbable materials from hyaluronan esterification. , 1998, Biomaterials.

[17]  S. Stylli,et al.  Hyaluronidase-2 overexpression accelerates intracerebral but not subcutaneous tumor formation of murine astrocytoma cells. , 1999, Cancer research.

[18]  S. Kumar,et al.  Hyaluronan stimulates tumor cell migration by modulating the fibrin fiber architecture. , 1999, Journal of cell science.

[19]  C. Gladson The extracellular matrix of gliomas: modulation of cell function. , 1999, Journal of neuropathology and experimental neurology.

[20]  A. Rezania,et al.  Bioactivation of Metal Oxide Surfaces. 1. Surface Characterization and Cell Response , 1999 .

[21]  A. Kakita,et al.  Patterns and Dynamics of SVZ Cell Migration in the Postnatal Forebrain Monitoring Living Progenitors in Slice Preparations , 1999, Neuron.

[22]  L. Bourguignon,et al.  CD44 Interaction with Tiam1 Promotes Rac1 Signaling and Hyaluronic Acid-mediated Breast Tumor Cell Migration* , 2000, The Journal of Biological Chemistry.

[23]  M. Dembo,et al.  Cell movement is guided by the rigidity of the substrate. , 2000, Biophysical journal.

[24]  L G Griffith,et al.  Cell adhesion and motility depend on nanoscale RGD clustering. , 2000, Journal of cell science.

[25]  J. Hubbell,et al.  Protein delivery from materials formed by self-selective conjugate addition reactions. , 2001, Journal of controlled release : official journal of the Controlled Release Society.

[26]  Mina J. Bissell,et al.  Putting tumours in context , 2001, Nature Reviews Cancer.

[27]  M. Grinstaff,et al.  Photocrosslinkable polysaccharides for in situ hydrogel formation. , 2001, Journal of biomedical materials research.

[28]  M. Westphal,et al.  Inhibition of glioma angiogenesis and growth in vivo by systemic treatment with a monoclonal antibody against vascular endothelial growth factor receptor-2. , 2001, Cancer research.

[29]  Lilly Y. W. Bourguignon,et al.  Signaling Properties of Hyaluronan Receptors* , 2002, The Journal of Biological Chemistry.

[30]  A. Kaye,et al.  EGF receptor modifies cellular responses to hyaluronan in glioblastoma cell lines , 2002, Journal of Clinical Neuroscience.

[31]  S. Stylli,et al.  Overexpression of Hyaluronan Synthase-2 Reduces the Tumorigenic Potential of Glioma Cells Lacking Hyaluronidase Activity , 2002, Neurosurgery.

[32]  Glenn D Prestwich,et al.  Disulfide cross-linked hyaluronan hydrogels. , 2002, Biomacromolecules.

[33]  L. Puricelli,et al.  CD44 expression in human gliomas , 2002, Journal of surgical oncology.

[34]  R. Loeser,et al.  CD44 and integrin matrix receptors participate in cartilage homeostasis , 2002, Cellular and Molecular Life Sciences CMLS.

[35]  L. Bourguignon,et al.  Hyaluronan-mediated CD44 Interaction with RhoGEF and Rho Kinase Promotes Grb2-associated Binder-1 Phosphorylation and Phosphatidylinositol 3-Kinase Signaling Leading to Cytokine (Macrophage-Colony Stimulating Factor) Production and Breast Tumor Progression* , 2003, Journal of Biological Chemistry.

[36]  Christine E Schmidt,et al.  Photocrosslinked hyaluronic acid hydrogels: natural, biodegradable tissue engineering scaffolds. , 2003, Biotechnology and bioengineering.

[37]  J. Hubbell,et al.  Synthesis and physicochemical characterization of end-linked poly(ethylene glycol)-co-peptide hydrogels formed by Michael-type addition. , 2003, Biomacromolecules.

[38]  Martin Fussenegger,et al.  Method for generation of homogeneous multicellular tumor spheroids applicable to a wide variety of cell types. , 2003, Biotechnology and bioengineering.

[39]  Daniel J Brat,et al.  Microregional extracellular matrix heterogeneity in brain modulates glioma cell invasion. , 2004, The international journal of biochemistry & cell biology.

[40]  V. Norris,et al.  Reticulated hyaluronan hydrogels: a model for examining cancer cell invasion in 3D. , 2004, Matrix biology : journal of the International Society for Matrix Biology.

[41]  B. Toole,et al.  Hyaluronan: from extracellular glue to pericellular cue , 2004, Nature Reviews Cancer.

[42]  M. Schwartz,et al.  Integrins in Mechanotransduction* , 2004, Journal of Biological Chemistry.

[43]  M. Hotfilder,et al.  CD44 expression and hyaluronic acid binding of malignant glioma cells , 1999, Clinical & Experimental Metastasis.

[44]  Shin Jung,et al.  Hyaluronate Receptors Mediating Glioma Cell Migration and Proliferation , 2001, Journal of Neuro-Oncology.

[45]  Tatiana Segura,et al.  Crosslinked hyaluronic acid hydrogels: a strategy to functionalize and pattern. , 2005, Biomaterials.

[46]  J. Hubbell,et al.  Molecularly engineered PEG hydrogels: a novel model system for proteolytically mediated cell migration. , 2005, Biophysical journal.

[47]  Jack Lombardi,et al.  Rheological characterization of in situ cross-linkable hyaluronan hydrogels. , 2005, Biomacromolecules.

[48]  Shelly R. Peyton,et al.  Extracellular matrix rigidity governs smooth muscle cell motility in a biphasic fashion , 2005, Journal of cellular physiology.

[49]  T. B. Müller,et al.  Intra-operative 3D ultrasound in neurosurgery , 2006, Acta Neurochirurgica.

[50]  Kristyn S Masters,et al.  Crosslinked hyaluronan scaffolds as a biologically active carrier for valvular interstitial cells. , 2005, Biomaterials.

[51]  D A Weitz,et al.  Glioma expansion in collagen I matrices: analyzing collagen concentration-dependent growth and motility patterns. , 2005, Biophysical journal.

[52]  Gabor Forgacs,et al.  The interplay of cell-cell and cell-matrix interactions in the invasive properties of brain tumors. , 2006, Biophysical journal.

[53]  Charles Nicholson,et al.  In vivo diffusion analysis with quantum dots and dextrans predicts the width of brain extracellular space. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[54]  D. Lauffenburger,et al.  Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[55]  M. Berens,et al.  Molecular targets of glioma invasion , 2007, Cellular and Molecular Life Sciences.

[56]  Robert Langer,et al.  Hyaluronic acid hydrogel for controlled self-renewal and differentiation of human embryonic stem cells , 2007, Proceedings of the National Academy of Sciences.

[57]  L. Chin,et al.  Malignant astrocytic glioma: genetics, biology, and paths to treatment. , 2007, Genes & development.

[58]  Shouren Ge,et al.  Cell adaptation to a physiologically relevant ECM mimic with different viscoelastic properties. , 2007, Biomaterials.

[59]  Glenn D Prestwich,et al.  Tumor engineering: orthotopic cancer models in mice using cell-loaded, injectable, cross-linked hyaluronan-derived hydrogels. , 2007, Tissue engineering.

[60]  Barclay Morrison,et al.  Mechanical heterogeneity of the rat hippocampus measured by atomic force microscope indentation. , 2007, Journal of neurotrauma.

[61]  R. Misra,et al.  Biomaterials , 2008 .

[62]  R. Stern Hyaluronidases in cancer biology. , 2008, Seminars in cancer biology.

[63]  Tiffany W Guo,et al.  Epidermal growth factor-induced enhancement of glioblastoma cell migration in 3D arises from an intrinsic increase in speed but an extrinsic matrix- and proteolysis-dependent increase in persistence. , 2008, Molecular biology of the cell.

[64]  M. Collins,et al.  Investigation of the swelling behavior of crosslinked hyaluronic acid films and hydrogels produced using homogeneous reactions , 2008 .

[65]  L. Bourguignon Hyaluronan-mediated CD44 activation of RhoGTPase signaling and cytoskeleton function promotes tumor progression. , 2008, Seminars in cancer biology.

[66]  Christopher Beadle,et al.  The role of myosin II in glioma invasion of the brain. , 2008, Molecular biology of the cell.

[67]  Sanjay Kumar,et al.  Mechanics, malignancy, and metastasis: The force journey of a tumor cell , 2009, Cancer and Metastasis Reviews.

[68]  Santosh Kesari,et al.  Malignant gliomas in adults. , 2008, The New England journal of medicine.

[69]  Lynne E Bilston,et al.  Rheological properties of the tissues of the central nervous system: a review. , 2008, Medical engineering & physics.

[70]  T. Slaga,et al.  Final Report of the Safety Assessment of Hyaluronic Acid, Potassium Hyaluronate, and Sodium Hyaluronate , 2009, International journal of toxicology.

[71]  Valerie M. Weaver,et al.  A tense situation: forcing tumour progression , 2009, Nature Reviews Cancer.

[72]  Shin Jung,et al.  The effect of hyaluronic Acid on the invasiveness of malignant glioma cells : comparison of invasion potential at hyaluronic Acid hydrogel and matrigel. , 2009, Journal of Korean Neurosurgical Society.

[73]  Masahiro Inoue,et al.  Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. , 2009, Cancer cell.

[74]  Sanjay Kumar,et al.  The mechanical rigidity of the extracellular matrix regulates the structure, motility, and proliferation of glioma cells. , 2009, Cancer research.

[75]  Jason A. Burdick,et al.  Sequential crosslinking to control cellular spreading in 3-dimensional hydrogels , 2009 .

[76]  Ali Khademhosseini,et al.  Mechanically robust and bioadhesive collagen and photocrosslinkable hyaluronic acid semi-interpenetrating networks. , 2009, Tissue engineering. Part A.

[77]  A. Reber,et al.  Elastin‐derived peptides: Matrikines critical for glioblastoma cell aggressiveness in a 3‐D system , 2009, Glia.

[78]  M. Spector,et al.  Development of hyaluronic acid-based scaffolds for brain tissue engineering. , 2009, Acta biomaterialia.

[79]  Sanjay Kumar,et al.  Isoform-Specific Contributions of α-Actinin to Glioma Cell Mechanobiology , 2009, PloS one.

[80]  L. Kaufman,et al.  Pore size variable type I collagen gels and their interaction with glioma cells. , 2010, Biomaterials.

[81]  Jason B Shear,et al.  The effects of hyaluronic acid hydrogels with tunable mechanical properties on neural progenitor cell differentiation. , 2010, Biomaterials.

[82]  M. Preul,et al.  Hyaluronan scaffolds: a balance between backbone functionalization and bioactivity. , 2010, Acta biomaterialia.

[83]  Amit Jain,et al.  Probing cellular mechanobiology in three-dimensional culture with collagen-agarose matrices. , 2010, Biomaterials.

[84]  I. Stamenkovic,et al.  CD44 attenuates activation of the hippo signaling pathway and is a prime therapeutic target for glioblastoma. , 2010, Cancer research.

[85]  Jason A. Burdick,et al.  Spatially controlled hydrogel mechanics to modulate stem cell interactions , 2010 .

[86]  Jochen Guck,et al.  Mechanical difference between white and gray matter in the rat cerebellum measured by scanning force microscopy. , 2010, Journal of biomechanics.

[87]  Sanjay Kumar,et al.  From Molecular Signal Activation to Locomotion: An Integrated, Multiscale Analysis of Cell Motility on Defined Matrices , 2011, PloS one.

[88]  Sanjay Kumar,et al.  Microscale mechanisms of agarose-induced disruption of collagen remodeling. , 2011, Biomaterials.

[89]  Jason A. Burdick,et al.  Hyaluronic Acid Hydrogels for Biomedical Applications , 2011, Advanced materials.

[90]  Amit Pathak,et al.  Biophysical regulation of tumor cell invasion: moving beyond matrix stiffness. , 2011, Integrative biology : quantitative biosciences from nano to macro.

[91]  Tatiana Segura,et al.  The spreading, migration and proliferation of mouse mesenchymal stem cells cultured inside hyaluronic acid hydrogels. , 2011, Biomaterials.

[92]  Adam J Engler,et al.  Hydrogels with time-dependent material properties enhance cardiomyocyte differentiation in vitro. , 2011, Biomaterials.