Visible supercontinuum generation in photonic crystal fibers with a 400 W continuous wave fiber laser.

We demonstrate continuous wave supercontinuum generation extending to the visible spectral region by pumping photonic crystal fibers at 1.07 microm with a 400 W single mode, continuous wave, ytterbium fiber laser. The continuum spans over 1300 nm with average powers up to 50 W and spectral power densities over 50 mW/nm. Numerical modeling and understanding of the physical mechanisms has led us to identify the dominant contribution to the short wavelength extension to be trapping and scattering of dispersive waves by high energy solitons.

[1]  C. Headley,et al.  Pulsed and continuous-wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers , 2003 .

[2]  J R Taylor,et al.  Toward visible cw-pumped supercontinua. , 2008, Optics letters.

[3]  A. Mussot,et al.  Spectral broadening of a partially coherent CW laser beam in single-mode optical fibers. , 2004, Optics express.

[4]  Karlsson,et al.  Cherenkov radiation emitted by solitons in optical fibers. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[5]  A. Hasegawa,et al.  Tunable coherent IR and FIR sources utilizing modulational instability , 1980 .

[6]  P. Suret,et al.  Spectral broadening of a multimode continuous-wave optical field propagating in the normal dispersion regime of a fiber. , 2006, Optics letters.

[7]  J R Taylor,et al.  Continuous-wave, high-power, Raman continuum generation in holey fibers. , 2003, Optics letters.

[8]  S. Kobtsev,et al.  Modelling of high-power supercontinuum generation in highly nonlinear, dispersion shifted fibers at CW pump. , 2005, Optics express.

[9]  J. Travers,et al.  A new model for CW supercontinuum generation , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[10]  D. Skryabin,et al.  Theory of radiation trapping by the accelerating solitons in optical fibers , 2007, 0707.1598.

[11]  Thibaut Sylvestre,et al.  Tailoring CW supercontinuum generation in microstructured fibers with two-zero dispersion wavelengths. , 2007, Optics express.

[12]  C. Menyuk,et al.  Optimization of the split-step Fourier method in modeling optical-fiber communications systems , 2003 .

[13]  J. Lægsgaard Mode profile dispersion in the generalised nonlinear Schrödinger equation , 2007 .

[14]  James P. Gordon,et al.  Femtosecond distributed soliton spectrum in fibers , 1989 .

[15]  O. Bang,et al.  Soliton collision and Raman gain regimes in continuous-wave pumped supercontinuum generation. , 2006, Optics express.

[16]  D. Milam Review and assessment of measured values of the nonlinear refractive-index coefficient of fused silica. , 1998, Applied optics.

[17]  Keith J. Blow,et al.  Theoretical description of transient stimulated Raman scattering in optical fibers , 1989 .

[18]  J. R. Taylor,et al.  Pulses of Four Optical Cycles from an Optimized Optical Fibre/Grating Pair/Soliton Pulse Compressor at 1·32 μm , 1988 .

[19]  Frédérique Vanholsbeeck,et al.  The role of pump incoherence in continuous-wave supercontinuum generation. , 2005, Optics express.

[20]  Steven G. Johnson,et al.  Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis. , 2001, Optics express.

[21]  J. Taylor,et al.  Cascaded CW fibre Raman laser source 1.6-1.9 /spl mu/m , 1996 .

[22]  N. Godbout,et al.  Nonlinear self-phase-modulation effects: a vectorial first-order perturbation approach. , 1995, Optics letters.

[23]  Cyrus D. Cantrell,et al.  Multiple-vibrational-mode model for fiber-optic Raman gain spectrum and response function , 2002 .

[24]  J R Taylor,et al.  Extended blue supercontinuum generation in cascaded holey fibers. , 2005, Optics letters.

[25]  Heinz P. Weber,et al.  Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber , 1987 .

[26]  J. R. Taylor,et al.  Temporal and noise characteristics of continuous-wave-pumped continuum generation in holey fibers around 1300nm , 2004 .

[27]  P. Russell,et al.  Soliton Self-Frequency Shift Cancellation in Photonic Crystal Fibers , 2003, Science.

[28]  J. Taylor,et al.  Broadband, low intensity noise CW source for OCT at 1800 nm , 2008 .

[29]  Nam Seong Kim,et al.  Ultra-Broadband CW Supercontinuum Generation Centered at 1483.4 nm from Brillouin/Raman Fiber Laser , 2000 .

[30]  C. Headley,et al.  Continuous-wave pumping in the anomalous- and normal-dispersion regimes of nonlinear fibers for supercontinuum generation. , 2005, Optics letters.

[31]  J R Taylor,et al.  29 W High power CW supercontinuum source. , 2008, Optics express.

[32]  J. Taylor,et al.  High brightness picosecond all-fiber generation in 525-1800nm range with picosecond Yb pumping. , 2005, Optics express.

[33]  J R Taylor,et al.  Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation. , 2006, Optics express.

[34]  S V Chernikov,et al.  Ultrashort-pulse propagation in optical fibers. , 1990, Optics letters.

[35]  Hasegawa,et al.  Observation of modulational instability in optical fibers. , 1986, Physical review letters.

[36]  Chen,et al.  Radiations by "solitons" at the zero group-dispersion wavelength of single-mode optical fibers. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[37]  J. Hult,et al.  A Fourth-Order Runge–Kutta in the Interaction Picture Method for Simulating Supercontinuum Generation in Optical Fibers , 2007, Journal of Lightwave Technology.

[38]  J. Gordon,et al.  Theory of the soliton self-frequency shift. , 1986, Optics letters.

[39]  E. Dianov,et al.  Stimulated-Raman conversion of multisoliton pulses in quartz optical fibers , 1985 .

[40]  Pedro Corredera,et al.  Supercontinuum generation using a continuous-wave Raman fiber laser , 2003 .