Bayesian models of cognition

For over 200 years, philosophers and mathematicians have be en using probability theory to describe human cognition. While the theory of prob abilities was first developed as a means of analyzing games of chance, it quickly took on a larger and deeper significance as a formal account of how rational agents should reason in situations of uncertainty (Gigerenzer et al., 1989; Hacking, 1975). Our goal in this ch apter is to illustrate the kinds of computational models of cognition that we can build if we assume that human learning and inference approximately follow the principles of Bayesian probabilistic inference, and to explain some of the mathematical ideas and techniques underlying those models

[1]  Hinrich Schütze,et al.  Book Reviews: Foundations of Statistical Natural Language Processing , 1999, CL.

[2]  G. Csibra,et al.  Alison Gopnik Andrew N. Meltroff , 1997, Trends in Cognitive Sciences.

[3]  Joshua B Tenenbaum,et al.  Theory-based causal induction. , 2009, Psychological review.

[4]  H. B. Barlow,et al.  Unsupervised Learning , 1989, Neural Computation.

[5]  J. Tenenbaum,et al.  Theory-based Bayesian models of inductive learning and reasoning , 2006, Trends in Cognitive Sciences.

[6]  Aaron C. Courville,et al.  Bayesian theories of conditioning in a changing world , 2006, Trends in Cognitive Sciences.

[7]  Allan Collins,et al.  A spreading-activation theory of semantic processing , 1975 .

[8]  T. Landauer,et al.  A Solution to Plato's Problem: The Latent Semantic Analysis Theory of Acquisition, Induction, and Representation of Knowledge. , 1997 .

[9]  I. J. Myung,et al.  Applying Occam’s razor in modeling cognition: A Bayesian approach , 1997 .

[10]  James O. Berger,et al.  Ockham's Razor and Bayesian Analysis , 1992 .

[11]  D. Vere-Jones Markov Chains , 1972, Nature.

[12]  J. Tenenbaum,et al.  Two proposals for causal grammars , 2007 .

[13]  Gerard T. Barkema,et al.  Monte Carlo Methods in Statistical Physics , 1999 .

[14]  Radford M. Neal Markov Chain Sampling Methods for Dirichlet Process Mixture Models , 2000 .

[15]  Thomas L. Griffiths,et al.  Hierarchical Topic Models and the Nested Chinese Restaurant Process , 2003, NIPS.

[16]  Mark Steyvers,et al.  Topics in semantic representation. , 2007, Psychological review.

[17]  Stephen K. Reed,et al.  Pattern recognition and categorization , 1972 .

[18]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[19]  J. Tenenbaum,et al.  Topics in semantic association , 2005 .

[20]  H. Wellman,et al.  Cognitive development: foundational theories of core domains. , 1992, Annual review of psychology.

[21]  C. Glymour The Mind's Arrows: Bayes Nets and Graphical Causal Models in Psychology , 2000 .

[22]  Thomas L. Griffiths,et al.  Integrating Topics and Syntax , 2004, NIPS.

[23]  D. Krantz,et al.  The use of statistical heuristics in everyday inductive reasoning , 1983 .

[24]  I. Good Some history of the hierarchical Bayesian methodology , 1980 .

[25]  John R. Anderson The Adaptive Character of Thought , 1990 .

[26]  John P. Huelsenbeck,et al.  MRBAYES: Bayesian inference of phylogenetic trees , 2001, Bioinform..

[27]  Douglas L. Medin,et al.  Context theory of classification learning. , 1978 .

[28]  David Heckerman,et al.  A Tutorial on Learning with Bayesian Networks , 1998, Learning in Graphical Models.

[29]  Tom Burr,et al.  Causation, Prediction, and Search , 2003, Technometrics.

[30]  Nir Friedman,et al.  Being Bayesian about Network Structure , 2000, UAI.

[31]  Joshua B. Tenenbaum,et al.  Learning Causal Laws , 2003 .

[32]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems , 1988 .

[33]  Peter Norvig,et al.  Artificial intelligence - a modern approach, 2nd Edition , 2003, Prentice Hall series in artificial intelligence.

[34]  S. Carey Conceptual Change in Childhood , 1985 .

[35]  Mark Steyvers,et al.  Finding scientific topics , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[36]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[37]  T. Griffiths,et al.  Probabilistic inference in human semantic memory , 2006, Trends in Cognitive Sciences.

[38]  Radford M. Neal Connectionist Learning of Belief Networks , 1992, Artif. Intell..

[39]  John K Kruschke,et al.  Bayesian data analysis. , 2010, Wiley interdisciplinary reviews. Cognitive science.

[40]  Chris L. Baker,et al.  Goal Inference as Inverse Planning , 2007 .

[41]  A. Gopnik,et al.  Causal learning : psychology, philosophy, and computation , 2007 .

[42]  J. Tenenbaum,et al.  Bayesian Special Section Learning Overhypotheses with Hierarchical Bayesian Models , 2022 .

[43]  P. Cheng,et al.  From covariation to causation: a test of the assumption of causal power. , 2003, Journal of experimental psychology. Learning, memory, and cognition.

[44]  N. Chater,et al.  The probabilistic approach to human reasoning , 2001, Trends in Cognitive Sciences.

[45]  James H. Martin,et al.  Speech and language processing: an introduction to natural language processing, computational linguistics, and speech recognition, 2nd Edition , 2000, Prentice Hall series in artificial intelligence.

[46]  C. Sumiyoshi CATEGORY BASED INDUCTION , 1997 .

[47]  H. M. Jenkins,et al.  JUDGMENT OF CONTINGENCY BETWEEN RESPONSES AND OUTCOMES. , 1965, Psychological monographs.

[48]  J. Pearl Causality: Models, Reasoning and Inference , 2000 .

[49]  L. Rips Inductive judgments about natural categories. , 1975 .

[50]  Thomas L. Griffiths,et al.  Structure Learning in Human Causal Induction , 2000, NIPS.

[51]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[52]  J. Tenenbaum,et al.  Word learning as Bayesian inference. , 2007, Psychological review.

[53]  S. Sloman,et al.  The advantage of timely intervention. , 2004, Journal of experimental psychology. Learning, memory, and cognition.

[54]  Konrad Paul Kording,et al.  Review TRENDS in Cognitive Sciences Vol.10 No.7 July 2006 Special Issue: Probabilistic models of cognition Bayesian decision theory in sensorimotor control , 2022 .

[55]  Risto Lethonen Multilevel Statistical Models (3rd ed.) , 2005 .

[56]  J. Tenenbaum,et al.  Learning Domain Structures , 2004 .

[57]  D H Brainard,et al.  Bayesian color constancy. , 1997, Journal of the Optical Society of America. A, Optics, image science, and vision.

[58]  P. Cheng From covariation to causation: A causal power theory. , 1997 .

[59]  M. Escobar,et al.  Markov Chain Sampling Methods for Dirichlet Process Mixture Models , 2000 .

[60]  Thomas L. Griffiths,et al.  A probabilistic approach to semantic representation , 2019, Proceedings of the Twenty-Fourth Annual Conference of the Cognitive Science Society.

[61]  Mary L. Boas Mathematical Methods in the Physical Sciences: 2nd Ed , 1983 .

[62]  T. Fine,et al.  The Emergence of Probability , 1976 .

[63]  T. Bayes,et al.  Studies in the History of Probability and Statistics: IX. Thomas Bayes's Essay Towards Solving a Problem in the Doctrine of Chances , 1958 .

[64]  E. Markman,et al.  Word learning in children: an examination of fast mapping. , 1987, Child development.

[65]  Terrence J. Sejnowski,et al.  Unsupervised Learning , 2018, Encyclopedia of GIS.

[66]  A. Yuille,et al.  Opinion TRENDS in Cognitive Sciences Vol.10 No.7 July 2006 Special Issue: Probabilistic models of cognition Vision as Bayesian inference: analysis by synthesis? , 2022 .

[67]  Refractor Vision , 2000, The Lancet.

[68]  J. Tenenbaum,et al.  From mere coincidences to meaningful discoveries , 2007, Cognition.

[69]  David Heckerman,et al.  A Tutorial on Learning with Bayesian Networks , 1999, Innovations in Bayesian Networks.

[70]  D. Sperber Are folk taxonomies “memes”? , 1998, Behavioral and Brain Sciences.

[71]  R. Nosofsky Attention, similarity, and the identification-categorization relationship. , 1986, Journal of experimental psychology. General.

[72]  Linda B. Smith,et al.  Object name Learning Provides On-the-Job Training for Attention , 2002, Psychological science.

[73]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[74]  Tom Minka,et al.  Expectation-Propogation for the Generative Aspect Model , 2002, UAI.

[75]  Noam Chomsky,et al.  Language and problems of knowledge : the Managua lectures , 1990 .

[76]  Thomas L. Griffiths,et al.  Dynamical Causal Learning , 2002, NIPS.

[77]  Thomas L. Griffiths,et al.  Infinite latent feature models and the Indian buffet process , 2005, NIPS.

[78]  Steven A. Sloman,et al.  Causal reasoning through intervention , 2007 .

[79]  F. Ashby,et al.  Categorization as probability density estimation , 1995 .

[80]  Christopher D. Manning,et al.  Probabilistic models of language processing and acquisition , 2006, Trends in Cognitive Sciences.

[81]  Joshua B. Tenenbaum,et al.  Inferring causal networks from observations and interventions , 2003, Cogn. Sci..

[82]  J. Tenenbaum,et al.  Bayesian Networks, Bayesian Learning and Cognitive Development , 2022 .

[83]  Michael D. Lee,et al.  A Hierarchical Bayesian Model of Human Decision-Making on an Optimal Stopping Problem , 2006, Cogn. Sci..

[84]  J. Tenenbaum,et al.  Intuitive theories as grammars for causal inference , 2007 .

[85]  Rajesh P. N. Rao,et al.  Bayesian brain : probabilistic approaches to neural coding , 2006 .

[86]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[87]  J. Rice Mathematical Statistics and Data Analysis , 1988 .

[88]  Curt Burgess,et al.  Producing high-dimensional semantic spaces from lexical co-occurrence , 1996 .

[89]  Geoffrey E. Hinton,et al.  A Learning Algorithm for Boltzmann Machines , 1985, Cogn. Sci..

[90]  Joshua B. Tenenbaum,et al.  Theory-Based Induction , 2003 .

[91]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[92]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[93]  M. Ross Quillian,et al.  Retrieval time from semantic memory , 1969 .

[94]  Risto Lehtonen,et al.  Multilevel Statistical Models , 2005 .

[95]  Aarnout Brombacher,et al.  Probability... , 2009, Qual. Reliab. Eng. Int..

[96]  J. Tenenbaum,et al.  Structure and strength in causal induction , 2005, Cognitive Psychology.

[97]  Thomas A. Schreiber,et al.  The University of South Florida free association, rhyme, and word fragment norms , 2004, Behavior research methods, instruments, & computers : a journal of the Psychonomic Society, Inc.

[98]  Peter Green,et al.  Markov chain Monte Carlo in Practice , 1996 .

[99]  J. Tenenbaum,et al.  Using Physical Theories to Infer Hidden Causal Structure , 2004 .

[100]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[101]  S. Sloman Causal Models: How People Think about the World and Its Alternatives , 2005 .

[102]  Daniel Zelterman,et al.  Bayesian Artificial Intelligence , 2005, Technometrics.

[103]  K. F. Riley,et al.  Mathematical methods for the physical sciences , 1975 .

[104]  Mtw,et al.  Computation, causation, and discovery , 2000 .

[105]  Eugene Charniak,et al.  Statistical language learning , 1997 .

[106]  Thomas L. Griffiths,et al.  Prediction and Semantic Association , 2002, NIPS.