Structuring catalyst and reactor – an inviting avenue to process intensification

Multiphase catalytic processes involve the combination of scale-dependent and scale-independent phenomena, often resulting in a compromised, sub-optimal performance. The classical approach of randomly packed catalyst beds using unstructured catalyst particles may be outperformed by the careful design of the catalyst at the nano-scale and by the judicious choice and design of reactor. Application of structured catalysts and reactor internals and the combination of advanced reactor and catalyst systems with in situ separation allow decoupling the various phenomena involved, opening the way to intensified processes on a large scale. The integral approach of Catalysis and Reaction Engineering discussed here will play a pivotal role in the development of novel, future-proof processes.

[1]  Gonzalo Prieto,et al.  The yin and yang in the development of catalytic processes: catalysis research and reaction engineering. , 2015, Angewandte Chemie.

[2]  G. Groppi,et al.  Structured catalysts for non-adiabatic applications , 2014 .

[3]  Dan Luss,et al.  LNT–SCR dual-layer catalysts optimized for lean NOx reduction by H2 and CO , 2014 .

[4]  F. Kapteijn,et al.  Catalysis engineering of bifunctional solids for the one-step synthesis of liquid fuels from syngas: a review , 2014 .

[5]  F. Kapteijn,et al.  Metal Organic Framework Catalysis: Quo vadis? , 2014 .

[6]  K. Mayrhofer,et al.  Carbon‐Based Yolk–Shell Materials for Fuel Cell Applications , 2014 .

[7]  Maxim A. Nasalevich,et al.  Insights into the Catalytic Performance of Mesoporous H‐ZSM‐5‐Supported Cobalt in Fischer–Tropsch Synthesis , 2014 .

[8]  Johannes Zalucky,et al.  Investigation of a packed bed in a mini channel with a low channel-to-particle diameter ratio: Flow regimes and mass transfer in gas–liquid operation , 2014 .

[9]  F. Kapteijn,et al.  The oxamate route, a versatile post-functionalization for metal incorporation in MIL-101(Cr): Catalytic applications of Cu, Pd, and Au , 2013 .

[10]  J. Nijenhuis,et al.  A convection-based single-parameter model for heat transport in multiphase tubular reactors packed with closed cross flow structures , 2013 .

[11]  Freek Kapteijn,et al.  Process intensification of tubular reactors: Considerations on catalyst hold-up of structured packings , 2013 .

[12]  F. Kapteijn,et al.  Shape and Transition State Selective Hydrogenations Using Egg-Shell Pt-MIL-101(Cr) Catalyst , 2013 .

[13]  Tiejun Wang,et al.  Tandem catalytic synthesis of light isoparaffin from syngas via Fischer–Tropsch synthesis by newly developed core–shell-like zeolite capsule catalysts , 2013 .

[14]  Qihang Lin,et al.  A Catalyst for One‐step Isoparaffin Production via Fischer–Tropsch Synthesis: Growth of a H‐Mordenite Shell Encapsulating a Fused Iron Core , 2013 .

[15]  Freek Kapteijn,et al.  Hierarchical H-ZSM-5-supported cobalt for the direct synthesis of gasoline-range hydrocarbons from syngas: Advantages, limitations, and mechanistic insight , 2013 .

[16]  Freek Kapteijn,et al.  Towards liquid fuels from biosyngas: effect of zeolite structure in hierarchical-zeolite-supported cobalt catalysts. , 2013, ChemSusChem.

[17]  J. Čejka,et al.  The effect of MFI zeolite lamellar and related mesostructures on toluene disproportionation and alkylation , 2013 .

[18]  J. Moulijn,et al.  Catalyst Performance Testing in Multiphase Systems: Implications of Using Small Catalyst Particles in Hydrodesulfurization , 2013 .

[19]  Freek Kapteijn,et al.  Toward bifunctional catalysts for the direct conversion of syngas to gasoline range hydrocarbons: H-ZSM-5 coated Co versus H-ZSM-5 supported Co , 2013 .

[20]  A. Corma,et al.  Bifunctional iridium-(2-aminoterephthalate)–Zr-MOF chemoselective catalyst for the synthesis of secondary amines by one-pot three-step cascade reaction ☆ , 2013 .

[21]  F. Kapteijn,et al.  Breaking the Fischer-Tropsch synthesis selectivity: direct conversion of syngas to gasoline over hierarchical Co/H-ZSM-5 catalysts† , 2013 .

[22]  A. Corma,et al.  MOFs as Multifunctional Catalysts: Synthesis of Secondary Arylamines, Quinolines, Pyrroles, and Arylpyrrolidines over Bifunctional MIL‐101 , 2013 .

[23]  Kimoon Kim,et al.  Tandem catalysis with a bifunctional site-isolated Lewis acid-Brønsted base metal-organic framework, NH2-MIL-101(Al). , 2012, Chemical communications.

[24]  Enrico Bianchi,et al.  An appraisal of the heat transfer properties of metallic open-cellfoams for strongly exo-/endo-thermic catalytic processes in tubular reactors , 2012 .

[25]  A. Corma,et al.  An unexpected bifunctional acid base catalysis in IRMOF-3 for Knoevenagel condensation reactions , 2012 .

[26]  A. Corma,et al.  Bifunctional Metal Organic Framework Catalysts for Multistep Reactions: MOF‐Cu(BTC)‐[Pd] Catalyst for One‐Pot Heteroannulation of Acetylenic Compounds , 2012 .

[27]  J. Nijenhuis,et al.  Heat transport in structured packings with two-phase co-current downflow , 2012 .

[28]  Volker Hessel,et al.  Liquid–Liquid Flow in a Capillary Microreactor: Hydrodynamic Flow Patterns and Extraction Performance , 2012 .

[29]  W. Marsden I and J , 2012 .

[30]  D. Cahela,et al.  Novel catalyst structures with enhanced heat transfer characteristics , 2011 .

[31]  Cheng Wang,et al.  A chiral metal-organic framework for sequential asymmetric catalysis. , 2011, Chemical communications.

[32]  F. Kapteijn,et al.  Heterogeneously Catalyzed Continuous-Flow Hydrogenation Using Segmented Flow in Capillary Columns , 2011, ChemCatChem.

[33]  R. Ryoo,et al.  Surfactant-Directed Zeolite Nanosheets: A High-Performance Catalyst for Gas-Phase Beckmann Rearrangement , 2011 .

[34]  Rob Ameloot,et al.  An amino-modified Zr-terephthalate metal-organic framework as an acid-base catalyst for cross-aldol condensation. , 2011, Chemical communications.

[35]  A. Lu,et al.  High-temperature stable, iron-based core-shell catalysts for ammonia decomposition. , 2011, Chemistry.

[36]  F. Kapteijn,et al.  Isobutane dehydrogenation in a DD3R zeolite membrane reactor , 2011 .

[37]  A. Corma,et al.  Bridging homogeneous and heterogeneous catalysis with MOFs: “Click” reactions with Cu-MOF catalysts , 2010 .

[38]  R. Mudde,et al.  Gas Fraction and Bubble Dynamics in Structured Slurry Bubble Columns , 2010 .

[39]  Andreas Seidel-Morgenstern,et al.  Membrane reactors : distributing reactants to improve selectivity and yield , 2010 .

[40]  Yingwei Li,et al.  Multifunctional catalysis by Pd@MIL-101: one-step synthesis of methyl isobutyl ketone over palladium nanoparticles deposited on a metal-organic framework. , 2010, Chemical communications.

[41]  J. Nijenhuis,et al.  Heat transport in structured packings with co-current downflow of gas and liquid , 2010 .

[42]  R. Zennaro,et al.  An experimental investigation of Fischer–Tropsch synthesis over washcoated metallic structured supports , 2009 .

[43]  O. Terasaki,et al.  Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts , 2009, Nature.

[44]  J. Nijenhuis,et al.  Intensification of co-current gas–liquid reactors using structured catalytic packings: A multiscale approach , 2009 .

[45]  J. Moulijn,et al.  Catalyst testing in a multiple-parallel, gas–liquid, powder-packed bed microreactor , 2009 .

[46]  T. Bauer,et al.  Konzeptstudie: Strukturierter Rieselbettreaktor , 2009 .

[47]  S. Abelló,et al.  Mesoporous metallosilicate zeolites by desilication: On the generic pore-inducing role of framework trivalent heteroatoms , 2009 .

[48]  S. Abelló,et al.  Tailored Mesoporosity Development in Zeolite Crystals by Partial Detemplation and Desilication , 2009 .

[49]  I. Arčon,et al.  Synthesis and structural investigations on aluminium-free Ti-Beta/SBA-15 composite , 2009 .

[50]  C. Christensen,et al.  Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design. , 2008, Chemical Society reviews.

[51]  S. Abelló,et al.  Toward functional clathrasils: size- and composition-controlled octadecasil nanocrystals by desilication. , 2008, Angewandte Chemie.

[52]  S. Abelló,et al.  Mesoporous beta zeolite obtained by desilication , 2008 .

[53]  Liang Zhao,et al.  Investigation on the mechanism of diffusion in mesopore structured ZSM-5 and improved heavy oil conversion , 2008 .

[54]  Jacob A. Moulijn,et al.  Structured Packings for Multiphase Catalytic Reactors , 2008 .

[55]  N. Kasian,et al.  Selective Isomorphism of Silicon, Aluminium and Titanium in the Extra-Large Pore Zeolite-Like Germanate IPC-3 , 2008 .

[56]  S. Hong,et al.  Delaminated zeolite‐catalysed synthesis of high‐molecular weight polycarbosilane as a low shrinkage SiC precursor , 2008 .

[57]  M. Coppens,et al.  Facile synthesis of ZSM-5 composites with hierarchical porosity , 2008 .

[58]  M. Coppens,et al.  Single-template synthesis of zeolite ZSM-5 composites with tunable mesoporosity. , 2007, Chemical communications.

[59]  S. Mintova,et al.  Perspectives of Micro/Mesoporous Composites in Catalysis , 2007 .

[60]  S. Ernst,et al.  Zeolite SSZ-53: an extra-large-pore zeolite with interesting catalytic properties. , 2007, Angewandte Chemie.

[61]  C. Christensen,et al.  Mesoporous Carbon Prepared from Carbohydrate as Hard Template for Hierarchical Zeolites , 2007 .

[62]  V. Meynen,et al.  Synthesis of siliceous materials with micro- and mesoporosity , 2007 .

[63]  C. Christensen,et al.  Mesoporous zeolite and zeotype single crystals synthesized in fluoride media , 2007 .

[64]  John Nijenhuis,et al.  Four ways to introduce structure in fluidized bed reactors , 2007 .

[65]  F. Kapteijn,et al.  Direct demonstration of enhanced diffusion in mesoporous ZSM-5 zeolite obtained via controlled desilication. , 2007, Journal of the American Chemical Society.

[66]  S. Kaliaguine,et al.  Acylation of different amino derivatives with fatty acids on UL-MFI-type catalysts , 2007 .

[67]  Xiaotong Wei,et al.  Development and characterization of mesoporosity in ZSM-12 by desilication , 2006 .

[68]  M. Comotti,et al.  High-temperature-stable catalysts by hollow sphere encapsulation. , 2006, Angewandte Chemie.

[69]  Jingjiang He,et al.  Multiple-functional capsule catalysts: a tailor-made confined reaction environment for the direct synthesis of middle isoparaffins from syngas. , 2006, Chemistry.

[70]  F. Kapteijn,et al.  Carbon coated monoliths as support material for a lactase from Aspergillus oryzae: Characterization and design of the carbon carriers , 2006 .

[71]  S. Kuwabata,et al.  Ligand-free platinum nanoparticles encapsulated in a hollow porous carbon shell as a highly active heterogeneous hydrogenation catalyst. , 2006, Angewandte Chemie.

[72]  N. Nishiyama,et al.  Selective formation of para-xylene over H-ZSM-5 coated with polycrystalline silicalite crystals , 2006 .

[73]  Toshiyuki Yokoi,et al.  Catalytic properties of hierarchical mesoporous zeolites templated with a mixture of small organic ammonium salts and mesoscale cationic polymers. , 2006, Angewandte Chemie.

[74]  J. Moulijn,et al.  Structured Catalysts and Reactors , 2005 .

[75]  F. Kapteijn,et al.  Silicalite-1 coating on Pt/TiO2 particles by a two-step hydrothermal synthesis , 2005 .

[76]  R. Gläser,et al.  The role of mesopores in intracrystalline transport in USY zeolite: PFG NMR diffusion study on various length scales. , 2005, Journal of the American Chemical Society.

[77]  F. Kapteijn,et al.  High performance monolithic catalysts for hydrogenation reactions , 2005 .

[78]  Mario Montes,et al.  Monolithic reactors for environmental applications: A review on preparation technologies , 2005 .

[79]  Michael Stöcker,et al.  Diffusion in Fluid Catalytic Cracking Catalysts on Various Displacement Scales and Its Role in Catalytic Performance , 2005 .

[80]  G. Groppi,et al.  Mass-Transfer Characterization of Metallic Foams as Supports for Structured Catalysts , 2005 .

[81]  Y. Yoneyama,et al.  Designing a New Kind of Capsule Catalyst and Its Application for Direct Synthesis of Middle Isoparaffins from Synthesis Gas , 2005 .

[82]  Jingjiang He,et al.  Designing a capsule catalyst and its application for direct synthesis of middle isoparaffins. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[83]  Akira Taguchi,et al.  Ordered mesoporous materials in catalysis , 2005 .

[84]  O. Terasaki,et al.  Delamination of Ti-MWW and High Efficiency in Epoxidation of Alkenes with Various Molecular Sizes , 2004 .

[85]  Weidong Zhu,et al.  Reactant-Selective Hydrogenation over Composite Silicalite-1-Coated Pt/TiO2 Particles , 2004 .

[86]  J. Richardson,et al.  Properties of ceramic foam catalyst supports: mass and heat transfer , 2003 .

[87]  S. Kaliaguine,et al.  TS-1 coated mesocellular titano-silica foams as new catalysts for oxidation of bulky molecules , 2003 .

[88]  B. Ferrer,et al.  Confinement Effects at the External Surface of Delaminated Zeolites (ITQ-2): An Inorganic Mimic of Cyclodextrins , 2003 .

[89]  Michael T. Klein Catalyst design, optimal distribution of catalyst in pellets, reactors, and membranes. By Massimo Morbidelli, Asterios Gavriilidis, and Arvind Varma, Cambridge University Press, Cambridge, U.K., 2001, 227 pp., $60.00 , 2002 .

[90]  Patrick L. Mills,et al.  Multiphase catalytic reactors: a perspective on current knowledge and future trends , 2002 .

[91]  Yajun Wang,et al.  Hollow Zeolite Capsules: A Novel Approach for Fabrication and Guest Encapsulation , 2002 .

[92]  Avelino Corma,et al.  ITQ-18 a new delaminated stable zeolite , 2001 .

[93]  F. Kapteijn,et al.  CARBON-BASED MONOLITHIC STRUCTURES , 2001 .

[94]  Freek Kapteijn,et al.  Preparation of monolithic catalysts , 2001 .

[95]  A. Corma,et al.  Catalytic Performance of the New Delaminated ITQ-2 Zeolite for Mild Hydrocracking and Aromatic Hydrogenation Processes , 2001 .

[96]  Y. Han,et al.  Mesoporous aluminosilicates with ordered hexagonal structure, strong acidity, and extraordinary hydrothermal stability at high temperatures. , 2001, Journal of the American Chemical Society.

[97]  D. Zhao,et al.  Strongly acidic and high-temperature hydrothermally stable mesoporous aluminosilicates with ordered hexagonal structure , 2001 .

[98]  Freek Kapteijn,et al.  New non-traditional multiphase catalytic reactors based on monolithic structures , 2001 .

[99]  H.P.A. Calis,et al.  CFD modelling and experimental validation of pressure drop and flow profile in a novel structured catalytic reactor packing , 2001 .

[100]  T. Pinnavaia,et al.  Steam-Stable Aluminosilicate Mesostructures Assembled from Zeolite Type Y Seeds , 2000 .

[101]  Enrico Tronconi,et al.  Design of novel monolith catalyst supports for gas/solid reactions with heat exchange , 2000 .

[102]  A. Corma,et al.  New Aluminosilicate and Titanosilicate Delaminated Materials Active for Acid Catalysis, and Oxidation Reactions Using H2O2 , 2000 .

[103]  Avelino Corma,et al.  Delaminated Zeolites: Combining the Benefits of Zeolites and Mesoporous Materials for Catalytic Uses , 1999 .

[104]  Christian Baerlocher,et al.  An Ordered Form of the Extra-Large-Pore Zeolite UTD-1: Synthesis and Structure Analysis from Powder Diffraction Data , 1999 .

[105]  C. Scala,et al.  Heat transfer measurements and simulation of KATAPAK-M® catalyst supports , 1999 .

[106]  Freek Kapteijn,et al.  Modeling permeation of binary mixtures through zeolite membranes , 1999 .

[107]  F. Schüth,et al.  Ordered mesoporous materials , 1999 .

[108]  Freek Kapteijn,et al.  Monoliths in multiphase catalytic processes : aspects and prospects , 1999 .

[109]  F. Kapteijn,et al.  Methodological and operational aspects of permeation measurements on silicalite-1 membranes , 1998 .

[110]  P. A. Barrett,et al.  Synthesis in fluoride and hydroxide media and structure of the extra-large pore pure silica zeolite CIT-5 , 1998 .

[111]  Mark E. Davis,et al.  Characterization of the extra-large-pore zeolite UTD-1 , 1997 .

[112]  H. V. Bekkum,et al.  Catalytic testing of TiO2/platinum/silicalite-1 composites , 1996 .

[113]  F. Fajula,et al.  Dealumination of faujasite, mazzite, and offretite with ammonium hexafluorosilicate , 1990 .

[114]  F. Fajula,et al.  Factors affecting the steam dealumination of zeolite omega , 1990 .

[115]  T. Charng,et al.  Modelling of heat transfer in non-adiabatic monolith reactors and experimental comparisons of metal monoliths with packed beds , 1986 .

[116]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[117]  P. Weisz,et al.  Stepwise Reaction on Separate Catalytic Centers: Isomerization of Saturated Hydrocarbons. , 1957, Science.

[118]  E. W. Thiele Relation between Catalytic Activity and Size of Particle , 1939 .