Assembly of Na3V2(PO4)3 nanoparticles confined in a one-dimensional carbon sheath for enhanced sodium-ion cathode properties.

Structural and morphological control is an effective approach for improvement of electrochemical properties in rechargeable batteries. One-dimensionally assembled structure composed of NASICON-type Na3 V2 (PO4 )3 nanoparticles were fabricated through an electrospinning method to meet the requirements for the development of efficient electrode materials in Na-ion batteries. High-temperature treatment of electrospun precursor fibers under an argon flow provides a nonwoven fabric of nanowires comprising crystallographically oriented nanoparticles of NASICON-type Na3 V2 (PO4 )3 within a carbon sheath. The mesostructure comprising NASICON-type Na3 V2 (PO4 )3 and carbon give a short sodium-ion transport pass and an efficient electron conduction pass. Electrochemical properties of NASICON-type Na3 V2 (PO4 )3 are improved on the basis of one-dimensional nanostructures designed in the present study.

[1]  Haoshen Zhou,et al.  Single Crystallization of Olivine Lithium Phosphate Nanowires using Oriented Attachments , 2014 .

[2]  Yan Yu,et al.  Single-layered ultrasmall nanoplates of MoS2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage. , 2014, Angewandte Chemie.

[3]  A. Yamada,et al.  Role of Ligand-to-Metal Charge Transfer in O3-Type NaFeO2–NaNiO2 Solid Solution for Enhanced Electrochemical Properties , 2014 .

[4]  Atsuo Yamada,et al.  Kröhnkite-Type Na2Fe(SO4)2·2H2O as a Novel 3.25 V Insertion Compound for Na-Ion Batteries , 2014 .

[5]  M. Okubo,et al.  High rate sodium ion insertion into core-shell nanoparticles of Prussian blue analogues. , 2014, Chemical communications.

[6]  Wensheng Yang,et al.  Towards highly stable storage of sodium ions: a porous Na(3)V(2)(PO(4))(3)/C cathode material for sodium-ion batteries. , 2013, Chemistry.

[7]  Yuesheng Wang,et al.  A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries , 2013, Nature Communications.

[8]  Haoshen Zhou,et al.  VGCF-core@LiMn0.4Fe0.6PO4-sheath heterostructure nanowire for high rate Li-ion batteries , 2013 .

[9]  Liquan Chen,et al.  Room-temperature stationary sodium-ion batteries for large-scale electric energy storage , 2013 .

[10]  Jianwen Yang,et al.  Li3V2(PO4)3/C nanofibers composite as a high performance cathode material for lithium-ion battery , 2013 .

[11]  Lin Gu,et al.  Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries , 2013, Nature Communications.

[12]  Palani Balaya,et al.  The First Report on Excellent Cycling Stability and Superior Rate Capability of Na3V2(PO4)3 for Sodium Ion Batteries , 2013 .

[13]  Haoshen Zhou,et al.  Synthesis of LiNi0.5Mn1.5O4 and 0.5Li2MnO3–0.5LiNi1/3Co1/3Mn1/3O2 hollow nanowires by electrospinning , 2013 .

[14]  J. Tarascon,et al.  Low-potential sodium insertion in a NASICON-type structure through the Ti(III)/Ti(II) redox couple. , 2013, Journal of the American Chemical Society.

[15]  John B Goodenough,et al.  A superior low-cost cathode for a Na-ion battery. , 2013, Angewandte Chemie.

[16]  Jing Zhou,et al.  Superior Electrochemical Performance and Storage Mechanism of Na3V2(PO4)3 Cathode for Room‐Temperature Sodium‐Ion Batteries , 2013 .

[17]  Alok Kumar Rai,et al.  High rate performance of a Na3V2(PO4)3/C cathode prepared by pyro-synthesis for sodium-ion batteries , 2012 .

[18]  Xiaochang Qiao,et al.  Electrochemical performance of electrospun LiFePO4/C submicrofibers composite cathode material for lithium ion batteries , 2012 .

[19]  T. Ohno,et al.  Formation of Perpendicular Graphene Nanosheets on LiFePO4: A First-Principles Characterization , 2012 .

[20]  Haoshen Zhou,et al.  Electrospinning Synthesis of Wire-Structured LiCoO2 for Electrode Materials of High-Power Li-Ion Batteries , 2012 .

[21]  Teófilo Rojo,et al.  Na-ion batteries, recent advances and present challenges to become low cost energy storage systems , 2012 .

[22]  Yi Cui,et al.  A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage , 2012, Nature Communications.

[23]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[24]  Shigeto Okada,et al.  Electrochemical Properties of NaTi2(PO4)3 Anode for Rechargeable Aqueous Sodium-Ion Batteries , 2011 .

[25]  Wensheng Yan,et al.  Influence of LiFePO4/C interface on electrochemical properties , 2011 .

[26]  Jean-Marie Tarascon,et al.  Na2Ti3O7: Lowest voltage ever reported oxide insertion electrode for sodium ion batteries , 2011 .

[27]  Anubhav Jain,et al.  Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials , 2011 .

[28]  Yan Yu,et al.  Electrospinning of highly electroactive carbon-coated single-crystalline LiFePO4 nanowires. , 2011, Angewandte Chemie.

[29]  Eiji Kobayashi,et al.  Performance of NASICON Symmetric Cell with Ionic Liquid Electrolyte , 2010 .

[30]  Jake Christensen,et al.  Modeling Diffusion-Induced Stress in Li-Ion Cells with Porous Electrodes , 2010 .

[31]  Haoshen Zhou,et al.  Synthesis of triaxial LiFePO4 nanowire with a VGCF core column and a carbon shell through the electrospinning method. , 2010, ACS applied materials & interfaces.

[32]  Igor V. Zatovsky,et al.  NASICON-type Na3V2(PO4)3 , 2010, Acta crystallographica. Section E, Structure reports online.

[33]  Yan Yu,et al.  Encapsulation of Sn@carbon nanoparticles in bamboo-like hollow carbon nanofibers as an anode material in lithium-based batteries. , 2009, Angewandte Chemie.

[34]  P. Bruce,et al.  Nanomaterials for rechargeable lithium batteries. , 2008, Angewandte Chemie.

[35]  Kathryn E. Toghill,et al.  A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries. , 2007, Nature materials.

[36]  P. Balaya,et al.  Nano-ionics in the context of lithium batteries , 2006 .

[37]  W. Sigmund,et al.  Processing and Structure Relationships in Electrospinning of Ceramic Fiber Systems , 2006 .

[38]  J. Maier,et al.  Nanoionics: ion transport and electrochemical storage in confined systems , 2005, Nature materials.

[39]  P. Bruce,et al.  Nanostructured materials for advanced energy conversion and storage devices , 2005, Nature materials.

[40]  Xiaodong Wu,et al.  Cracking causing cyclic instability of LiFePO4 cathode material , 2005 .

[41]  John B. Goodenough,et al.  Li2NaV2(PO4)3: A 3.7 V Lithium-Insertion Cathode with the Rhombohedral NASICON Structure , 2001 .

[42]  Jean-Marie Tarascon,et al.  Materials' effects on the elevated and room temperature performance of CLiMn2O4 Li-ion batteries , 1997 .

[43]  J. Gopalakrishnan,et al.  Vanadium phosphate (V2(PO4)3): a novel NASICO N-type vanadium phosphate synthesized by oxidative deintercalation of sodium from sodium vanadium phosphate (Na3V2(PO4)3) , 1992 .

[44]  F. Tuinstra,et al.  Raman Spectrum of Graphite , 1970 .

[45]  Soo Yeon Lim,et al.  Electrochemical and Thermal Properties of NASICON Structured Na3V2(PO4)3 as a Sodium Rechargeable Battery Cathode: A Combined Experimental and Theoretical Study , 2012 .

[46]  Huilin Pan,et al.  Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries , 2012 .

[47]  D Carlier,et al.  Electrochemical investigation of the P2–NaxCoO2 phase diagram. , 2011, Nature materials.