Analysis of Structured Low Rank Approximation as an Optimization Problem

In this paper, we consider the so-called structured low rank approximation (SLRA) problem as a problem of optimization on the set of either matrices or vectors. Briefly, SLRA is defined as follows. Given an initial matrix with a certain structure (for example, Hankel), the aim is to find a matrix of specified lower rank that approximates this initial matrix, whilst maintaining the initial structure. We demonstrate that the optimization problem arising is typically very difficult; in particular, the objective function is multiextremal even in simple cases. We also look at different methods of solving the SLRA problem. We show that some traditional methods do not even converge to a locally optimal matrix.

[1]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[2]  Ivan Markovsky,et al.  Structured low-rank approximation and its applications , 2008, Autom..

[3]  Antanas Žilinskas,et al.  Subdivision, Sampling, and Initialization Strategies for Simplical Branch and Bound in Global Optimization , 2002 .

[4]  R. Plemmons,et al.  Structured low rank approximation , 2003 .

[5]  James A. Cadzow,et al.  Signal enhancement-a composite property mapping algorithm , 1988, IEEE Trans. Acoust. Speech Signal Process..

[6]  Sabine Van Huffel,et al.  Total least squares problem - computational aspects and analysis , 1991, Frontiers in applied mathematics.

[7]  Sabine Van Huffel,et al.  Enhanced resolution based on minimum variance estimation and exponential data modeling , 1993, Signal Process..

[8]  Eric R. Ziegel,et al.  The Elements of Statistical Learning , 2003, Technometrics.

[9]  Anatoly A. Zhigljavsky,et al.  Analysis of Time Series Structure - SSA and Related Techniques , 2001, Monographs on statistics and applied probability.

[10]  A. A. Zhigli︠a︡vskiĭ,et al.  Theory of Global Random Search , 1991 .

[11]  F. R. Gantmakher The Theory of Matrices , 1984 .

[12]  Ivan Markovsky,et al.  Bibliography on total least squares and related methods , 2010 .

[13]  A. Zilinskas,et al.  On the Convergence of the P-Algorithm for One-Dimensional Global Optimization of Smooth Functions , 1999 .

[14]  Sabine Van Huffel,et al.  Exact and Approximate Modeling of Linear Systems: A Behavioral Approach (Mathematical Modeling and Computation) (Mathematical Modeling and Computation) , 2006 .

[15]  D. S. G. Pollock,et al.  A handbook of time-series analysis, signal processing and dynamics , 1999 .

[16]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[17]  Nina Golyandina,et al.  On the choice of parameters in Singular Spectrum Analysis and related subspace-based methods , 2010, 1005.4374.

[18]  Jonathan William Gillard,et al.  Cadzow's basic algorithm, alternating projections and singular spectrum analysis , 2010 .

[19]  Jerry M. Mendel,et al.  The constrained total least squares technique and its applications to harmonic superresolution , 1991, IEEE Trans. Signal Process..

[20]  G. P. King,et al.  Extracting qualitative dynamics from experimental data , 1986 .

[21]  A. A. Zhigli︠a︡vskiĭ,et al.  Stochastic Global Optimization , 2007 .

[22]  L. Mirsky,et al.  The Theory of Matrices , 1961, The Mathematical Gazette.

[23]  Sabine Van Huffel,et al.  Analysis of the Structured Total Least Squares Problem for Hankel/Toeplitz Matrices , 2004, Numerical Algorithms.

[24]  A. Zhigljavsky Stochastic Global Optimization , 2008, International Encyclopedia of Statistical Science.

[25]  J. Elsner,et al.  Singular Spectrum Analysis: A New Tool in Time Series Analysis , 1996 .

[26]  Andrew L. Rukhin,et al.  Analysis of Time Series Structure SSA and Related Techniques , 2002, Technometrics.

[27]  S. Van Huffel,et al.  Exact and Approximate Modeling of Linear Systems: A Behavioral Approach , 2006 .

[28]  Bart De Moor,et al.  Total least squares for affinely structured matrices and the noisy realization problem , 1994, IEEE Trans. Signal Process..

[29]  J. Mockus,et al.  The Bayesian approach to global optimization , 1989 .