Thermal and Hydraulic Effects of Coke Deposit in Hydrocarbon Pyrolysis Process

Fuel pyrolysis can be of benefit for regenerative cooling techniques, due to its endothermic effect in ensuring the thermal resistance of hypersonic vehicles and structures. Among pyrolysis species production, there is that of coke formation. A numerical code is used in this paper to investigate the related phenomena, based on two experiments using titanium and stainless steel reactors, which present different pyrolysis rates under similar operating conditions. The absence of effect of the reactor’s physical properties on the pyrolysis is demonstrated. The thermal insulationeffectbycokedepositisprovedtohaveanegligibleimpactonthesystem.Thecloggingofthereactorfound experimentally is confirmed numerically at the same time. The carbon deposit thickness reaches the value of the reactor’s inner radius: 2.175 mm. The corresponding reduction of flow cross section modifies the Reynolds number, the residence time (decreased by a factor of 4) and the absorbed energy (reduction by a factor of 3). This last point is responsibleforthediscrepanciesobservedexperimentally.Thecokestickstothestainlesssteelreactorandnottothe titaniumreactor.Consequently,pyrolysis islowerforthe stainlesssteelcasethanforthe titaniumcaseunder similar furnace-temperature setups.

[1]  L. Albright,et al.  Types of coke formed during the pyrolysis of light hydrocarbons , 1978 .

[2]  J. C. Marek,et al.  Coke formation during pyrolysis: roles of residence time, reactor geometry, and time of operation , 1988 .

[3]  P. Lucas,et al.  Pyrolytic carbon deposition from methane: An analytical approach to the chemical process , 1990 .

[4]  G. Froment,et al.  A percolation approach for the modeling of deactivation of zeolite catalysts by coke formation , 1990 .

[5]  F. Billaud,et al.  Thermal coupling of methane, experimental investigations on coke deposits , 1995 .

[6]  A. Becker,et al.  Chemistry and kinetics of chemical vapour deposition of pyrocarbon: I. Fundamentals of kinetics and chemical reaction engineering , 1996 .

[7]  Evaristo C. Biscaia,et al.  Mathematical modeling and simulation of catalytic cracking of gasoil in a fixed bed: Coke formation , 1997 .

[8]  A. Haji-sheikh,et al.  Parametric Study of Actively Cooled Aircraft Structure , 1998 .

[9]  A. Becker,et al.  Chemistry and kinetics of chemical vapor deposition of pyrocarbon — IV pyrocarbon deposition from methane in the low temperature regime , 1998 .

[10]  Donald L. Potter,et al.  Predictions of ablating hypersonic vehicles using an iterative coupled fluid/thermal approach , 2001 .

[11]  Guobin Chen,et al.  Equation of state analog correlations for the viscosity and thermal conductivity of hydrocarbons and reservoir fluids , 2001 .

[12]  Jafar Towfighi,et al.  Coke deposition by physical condensation of poly-cyclic hydrocarbons in the transfer line exchanger (TLX) of olefin plant , 2003 .

[13]  Kevin Dahm,et al.  Experimental and modelling investigation of the thermal decomposition of n-dodecane , 2004 .

[14]  Ronald S. Fry,et al.  A Century of Ramjet Propulsion Technology Evolution , 2004 .

[15]  Christoph Kern,et al.  Regeneration of coked catalysts—modelling and verification of coke burn-off in single particles and fixed bed reactors , 2005 .

[16]  Zhancheng Guo,et al.  NUMERICAL SIMULATION FOR A PROCESS ANALYSIS OF A COKE OVEN , 2005 .

[17]  Nicolas Gascoin,et al.  Etude et Mesure de Paramètres Pertinents Dans Un écoulement Réactif Application Au Refroidissement Par Endo-carburant d'Un Super-statoréacteur , 2006 .

[18]  E. M. Matos,et al.  Predicting coke formation due to thermal cracking inside tubes of petrochemical fired heaters using a fast CFD formulation , 2006 .

[19]  J. M. Lopes,et al.  Kinetic modeling of the methylcyclohexane transformation over H-USY: Deactivating effect of coke and nitrogen basic compounds , 2006 .

[20]  M. García-Dopico,et al.  Modelling coke formation and deactivation in a FCCU , 2006 .

[21]  Marc Bouchez,et al.  Measurements for fuel reforming for scramjet thermal management and combustion optimization : status of the COMPARER project. , 2006 .

[22]  Marc Bouchez,et al.  SFGP 2007 - Pyrolysis of Supercritical Endothermic Fuel: Evaluation for Active Cooling Instrumentation , 2008 .

[23]  F. Battin‐Leclerc,et al.  Thermal decomposition of n-dodecane: Experiments and kinetic modeling , 2007 .

[24]  Y. Touré,et al.  Validation of transient cooling modeling for hypersonic application , 2007 .

[25]  Johan Steelant,et al.  ATLLAS: Aero-Thermal Loaded Material Investigations for High-Speed Vehicles , 2008 .

[26]  R. Karimzadeh,et al.  Modeling of catalytic coke formation in thermal cracking reactors , 2008 .

[27]  N. Sandham,et al.  Material-Aero-Thermal Interaction Computations in the ATLLAS European Programme , 2008 .

[28]  Marc Bouchez,et al.  Characterisation of coking activity during supercritical hydrocarbon pyrolysis , 2008 .

[29]  G. Abraham Etude et développement d'une méthode d'analyse par spectroscopie infrarouge appliquée à la pyrolyse d'hydrocarbures en conditions supercritiques et transitoires , 2009 .

[30]  Elsevier Sdol Journal of Analytical and Applied Pyrolysis , 2009 .

[31]  Adam J. Amar,et al.  Development and Verification of a One-Dimensional Ablation Code Including Pyrolysis Gas Flow , 2009 .

[32]  Y. Touré,et al.  Measurements for fuel reforming for scramjet thermal management and combustion optimization : status of the COMPARER project. , 2006 .

[33]  N. Gascoin,et al.  Characterization of supercritical reactive flow for hypersonic real-time application , 2009 .

[34]  N. Gascoin,et al.  Regenerative Cooling Efficiency of Several Synthetic and Jet Fuels and Preliminary Combustion-Pyrolysis Coupling , 2010 .

[35]  Hua Meng,et al.  Numerical Studies of Supercritical Turbulent Convective Heat Transfer of Cryogenic-Propellant Methane , 2010 .

[36]  F. Nasuti,et al.  Numerical Analysis of Heated Channel Flows by a Space-Marching Finite Volume Technique , 2010 .

[37]  Philippe Gillard,et al.  Synthetic and jet fuels pyrolysis for cooling and combustion applications , 2010 .

[38]  Marc Bouchez,et al.  Real-time method for the identification and quantification of hydrocarbon pyrolysis products: Part II. Application to transient pyrolysis and validation by numerical simulation , 2011 .

[39]  Marc Bouchez,et al.  Real-time method for the identification and quantification of hydrocarbon pyrolysis products: Part I. Development and validation of the infra red technique , 2011 .