Pricing multi-asset option problems: a Chebyshev pseudo-spectral method

The aim of this paper is to contribute a new second-order pseudo-spectral method via a non-uniform distribution of the computational nodes for solving multi-asset option pricing problems. In such problems, the prices are required to be as accurately as possible around the strike price. Accordingly, the proposed modification of the Chebyshev–Gauss–Lobatto points would concentrate on this area. This adaptation is also fruitful for the non-smooth payoffs which cause discontinuities in the strike price. The proposed scheme competes well with the existing methods such as finite difference, meshfree, and adaptive finite difference methods on several benchmark problems.

[1]  L. Trefethen,et al.  Stability of the method of lines , 1992, Spectra and Pseudospectra.

[2]  Pier Giuseppe Giribone,et al.  Option pricing via radial basis functions: Performance comparison with traditional numerical integration scheme and parameters choice for a reliable pricing , 2015 .

[3]  RAUL KANGRO,et al.  Far Field Boundary Conditions for Black-Scholes Equations , 2000, SIAM J. Numer. Anal..

[4]  Elisabeth Larsson,et al.  Radial basis function partition of unity methods for pricing vanilla basket options , 2016, Comput. Math. Appl..

[5]  V. Shcherbakov Radial basis function partition of unity operator splitting method for pricing multi-asset American options , 2016 .

[6]  Kenneth R. Jackson,et al.  An efficient graphics processing unit‐based parallel algorithm for pricing multi‐asset American options , 2012, Concurr. Comput. Pract. Exp..

[7]  M. N. Spijker,et al.  Linear stability analysis in the numerical solution of initial value problems , 1993, Acta Numerica.

[8]  Fazlollah Soleymani,et al.  A Local Radial Basis Function Method for High-Dimensional American Option Pricing Problems , 2018, Math. Model. Anal..

[9]  Bengt Fornberg,et al.  A practical guide to pseudospectral methods: Introduction , 1996 .

[10]  D. A. Voss,et al.  Adaptive θ-methods for pricing American options , 2008 .

[11]  George Labahn,et al.  A penalty method for American options with jump diffusion processes , 2004, Numerische Mathematik.

[12]  Curt Randall,et al.  Pricing Financial Instruments: The Finite Difference Method , 2000 .

[13]  Abdul-Qayyum M. Khaliq,et al.  Stabilized explicit Runge-Kutta methods for multi-asset American options , 2014, Comput. Math. Appl..

[14]  Matthias Ehrhardt,et al.  Novel methods in computational finance , 2016, Int. J. Comput. Math..

[15]  Paul Glasserman,et al.  Monte Carlo Methods in Financial Engineering , 2003 .

[16]  C.C.W. Leentvaar Pricing multi-asset options with sparse grids , 2008 .

[17]  Vadim Linetsky,et al.  Pricing Multi-Asset American Options: A Finite Element Method-of-Lines with Smooth Penalty , 2007, J. Sci. Comput..

[18]  R. H. Liu,et al.  Pricing American options under multi-state regime switching with an efficient L- stable method , 2015, Int. J. Comput. Math..

[19]  Svante Janson,et al.  Feynman–kac Formulas for Black–Scholes–Type Operators , 2006 .

[20]  Jonas Persson,et al.  Space-time adaptive finite difference method for European multi-asset options , 2007, Comput. Math. Appl..

[21]  Victor Shcherbakov,et al.  Pricing Derivatives under Multiple Stochastic Factors by Localized Radial Basis Function Methods , 2017, ArXiv.

[22]  Lina von Sydow,et al.  Radial Basis Function generated Finite Differences for option pricing problems , 2017, Comput. Math. Appl..

[23]  K. I. '. Hout,et al.  ADI finite difference schemes for option pricing in the Heston model with correlation , 2008, 0811.3427.

[24]  Lina von Sydow,et al.  A multigrid preconditioner for an adaptive Black-Scholes solver , 2011 .

[25]  J. Butcher Numerical methods for ordinary differential equations , 2003 .

[26]  Daniel Kressner,et al.  Krylov Subspace Methods for Linear Systems with Tensor Product Structure , 2010, SIAM J. Matrix Anal. Appl..

[27]  Aslak Tveito,et al.  Penalty methods for the numerical solution of American multi-asset option problems , 2008 .

[28]  Aldo Tagliani,et al.  Discontinuous payoff option pricing by Mellin transform: A probabilistic approach , 2017 .

[29]  Jonas Persson,et al.  BENCHOP – The BENCHmarking project in option pricing† , 2015, Int. J. Comput. Math..

[30]  J. L. Pedersen,et al.  Rationality Parameter for Exercising American Put , 2014 .

[31]  S.A. Borovkova,et al.  American Basket and Spread Option Pricing by a Simple Binomial Tree , 2012, The Journal of Derivatives.

[32]  Jari Toivanen,et al.  Operator splitting methods for American option pricing , 2004, Appl. Math. Lett..

[33]  James P. Braselton,et al.  Mathematica by Example , 1992 .

[34]  Kuldeep Shastri,et al.  Valuation by Approximation: A Comparison of Alternative Option Valuation Techniques , 1985, Journal of Financial and Quantitative Analysis.

[35]  L. Trefethen,et al.  Spectra and pseudospectra : the behavior of nonnormal matrices and operators , 2005 .