Stabilizing electrodeposition in elastic solid electrolytes containing immobilized anions

Elastic deformation in solid electrolytes with immobilized anions suppresses dendritic electrodeposition of metals. Ion transport–driven instabilities in electrodeposition of metals that lead to morphological instabilities and dendrites are receiving renewed attention because mitigation strategies are needed for improving rechargeability and safety of lithium batteries. The growth rate of these morphological instabilities can be slowed by immobilizing a fraction of anions within the electrolyte to reduce the electric field at the metal electrode. We analyze the role of elastic deformation of the solid electrolyte with immobilized anions and present theory combining the roles of separator elasticity and modified transport to evaluate the factors affecting the stability of planar deposition over a wide range of current densities. We find that stable electrodeposition can be easily achieved even at relatively high current densities in electrolytes/separators with moderate polymer-like mechanical moduli, provided a small fraction of anions are immobilized in the separator.

[1]  Lynden A. Archer,et al.  A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles , 2015, Nature Communications.

[2]  Hongkyung Lee,et al.  Ionomer-Liquid Electrolyte Hybrid Ionic Conductor for High Cycling Stability of Lithium Metal Electrodes , 2015, Scientific Reports.

[3]  Kenville E. Hendrickson,et al.  Stable Cycling of Lithium Metal Batteries Using High Transference Number Electrolytes , 2015 .

[4]  N. Kotov,et al.  A dendrite-suppressing composite ion conductor from aramid nanofibres , 2015, Nature Communications.

[5]  E. Dufresne,et al.  Surface tension and the mechanics of liquid inclusions in compliant solids. , 2014, Soft matter.

[6]  Qiwei Pan,et al.  Hybrid Electrolytes with Controlled Network Structures for Lithium Metal Batteries , 2015, Advanced materials.

[7]  K. Geng,et al.  Prospects for Dendrite-Free Cycling of Li Metal Batteries , 2015 .

[8]  Lynden A. Archer,et al.  Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries. , 2014, Journal of the American Chemical Society.

[9]  Ji‐Guang Zhang,et al.  Lithium metal anodes for rechargeable batteries , 2014 .

[10]  L. Archer,et al.  Stability Analysis of Electrodeposition across a Structured Electrolyte with Immobilized Anions , 2014 .

[11]  Zhengyuan Tu,et al.  Nanoporous Polymer‐Ceramic Composite Electrolytes for Lithium Metal Batteries , 2014 .

[12]  Christopher J. Ellison,et al.  Low-cost, dendrite-blocking polymer-Sb2O3 separators for lithium and sodium batteries , 2014 .

[13]  John S. Wettlaufer,et al.  Surface tension and contact with soft elastic solids , 2013, Nature Communications.

[14]  L. Archer,et al.  High Lithium Transference Number Electrolytes via Creation of 3-Dimensional, Charged, Nanoporous Networks from Dense Functionalized Nanoparticle Composites , 2013 .

[15]  Robert O. Ritchie,et al.  Nanocomposites of Titanium Dioxide and Polystyrene-Poly(ethylene oxide) Block Copolymer as Solid-State Electrolytes for Lithium Metal Batteries , 2013 .

[16]  Willi H. Hager,et al.  Wilfrid Noel Bond and the Bond number , 2012 .

[17]  A. Hexemer,et al.  Resolution of the Modulus versus Adhesion Dilemma in Solid Polymer Electrolytes for Rechargeable Lithium Metal Batteries , 2012 .

[18]  P. Kohl,et al.  Dendrite-Free Electrodeposition and Reoxidation of Lithium-Sodium Alloy for Metal-Anode Battery , 2011 .

[19]  Ali Mani,et al.  Deionization shocks in microstructures. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  Alan C. West,et al.  Effect of Electrolyte Composition on Lithium Dendrite Growth , 2008 .

[21]  G. McKinley Dimensionless Groups For Understanding Free Surface Flows of Complex Fluids , 2005 .

[22]  Charles W. Monroe,et al.  The Impact of Elastic Deformation on Deposition Kinetics at Lithium/Polymer Interfaces , 2005 .

[23]  M. Bazant,et al.  Electrochemical Thin Films at and above the Classical Limiting Current , 2004, SIAM J. Appl. Math..

[24]  Kang Xu,et al.  Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. , 2004, Chemical reviews.

[25]  Y. Marcus,et al.  Standard partial molar volumes of electrolytes and ions in nonaqueous solvents. , 2004, Chemical Reviews.

[26]  B. Zaltzman,et al.  Experimental Verification of the Electroosmotic Mechanism of Overlimiting Conductance Through a Cation Exchange Electrodialysis Membrane , 2002 .

[27]  J.-N. Chazalviel,et al.  Dendritic growth mechanisms in lithium/polymer cells , 1999 .

[28]  Huajian Gao,et al.  SURFACE ROUGHENING OF HETEROEPITAXIAL THIN FILMS , 1999 .

[29]  C. Léger,et al.  Dynamical characterization of one-dimensional stationary growth regimes in diffusion-limited electrodeposition processes , 1998 .

[30]  Alan C. West,et al.  Copper Deposition in the Presence of Polyethylene Glycol I. Quartz Crystal Microbalance Study , 1998 .

[31]  Eshel Ben-Jacob,et al.  Studies of bacterial branching growth using reaction–diffusion models for colonial development , 1998, Physica A: Statistical Mechanics and its Applications.

[32]  Toshiyuki Momma,et al.  In situ observation of lithium deposition processes in solid polymer and gel electrolytes , 1997 .

[33]  J. G. Wijmans,et al.  The solution-diffusion model: a review , 1995 .

[34]  Bazant Regulation of ramified electrochemical growth by a diffusive wave. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[35]  L. Sundström,et al.  On morphological instability during electrodeposition with a stagnant binary electrolyte , 1995 .

[36]  J. Chazalviel,et al.  Electrochemical aspects of the generation of ramified metallic electrodeposits. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[37]  C. Tobias,et al.  Roughness Development in Metal Electrodeposition II . Stability Theory , 1989 .

[38]  Robert C. Wolpert,et al.  A Review of the , 1985 .

[39]  K. Kitazawa,et al.  Theory of powdered crystal formation in electrocrystallization—occurrence of morphological instability at the electrode surface , 1980 .

[40]  R. J. Charles Stress Induced Binary Diffusion in a Solid , 1969 .

[41]  John Newman,et al.  Double layer structure at the limiting current , 1967 .

[42]  Martin Goldstein,et al.  Stress‐Induced Migration and Partial Molar Volume of Sodium Ions in Glass , 1964 .

[43]  W. Mullins Stability of a Planar Interface During Solidification of a Dilute Binary Alloy , 1964 .

[44]  J. L. Barton,et al.  The electrolytic growth of dendrites from ionic solutions , 1962, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[45]  W. Bond The surface tension of a moving water sheet , 1935 .