Sequential parameter optimization

Sequential parameter optimization is a heuristic that combines classical and modern statistical techniques to improve the performance of search algorithms. To demonstrate its flexibility, three scenarios are discussed: (1) no experience how to choose the parameter setting of an algorithm is available, (2) a comparison with other algorithms is needed, and (3) an optimization algorithm has to be applied effectively and efficiently to a complex real-world optimization problem. Although sequential parameter optimization relies on enhanced statistical techniques such as design and analysis of computer experiments, it can be performed algorithmically and requires basically the specification of the relevant algorithm's parameters

[1]  R Fisher,et al.  Design of Experiments , 1936 .

[2]  Margaret J. Robertson,et al.  Design and Analysis of Experiments , 2006, Handbook of statistics.

[3]  N. Draper,et al.  Applied Regression Analysis , 1966 .

[4]  P. Armitage Sequential Medical Trials , 1961, Biomedicine / [publiee pour l'A.A.I.C.I.G.].

[5]  Leo Breiman,et al.  Classification and Regression Trees , 1984 .

[6]  M. F.,et al.  Bibliography , 1985, Experimental Gerontology.

[7]  J. Kleijnen Statistical tools for simulation practitioners , 1986 .

[8]  C. Floudas,et al.  Synthesis of general distillation sequences : nonsharp separations , 1990 .

[9]  S.J.J. Smith,et al.  Empirical Methods for Artificial Intelligence , 1995 .

[10]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[11]  Hans-Paul Schwefel,et al.  Evolution and optimum seeking , 1995, Sixth-generation computer technology series.

[12]  Zbigniew Michalewicz,et al.  Evolutionary Algorithms for Constrained Parameter Optimization Problems , 1996, Evolutionary Computation.

[13]  Ross Ihaka,et al.  Gentleman R: R: A language for data analysis and graphics , 1996 .

[14]  Deborah G. Mayo,et al.  Error and the Growth of Experimental Knowledge , 1996 .

[15]  Hava T. Siegelmann,et al.  Computational capabilities of recurrent NARX neural networks , 1997, IEEE Trans. Syst. Man Cybern. Part B.

[16]  William J. Welch,et al.  Computer experiments and global optimization , 1997 .

[17]  Russell C. Eberhart,et al.  Comparison between Genetic Algorithms and Particle Swarm Optimization , 1998, Evolutionary Programming.

[18]  Donald R. Jones,et al.  Global versus local search in constrained optimization of computer models , 1998 .

[19]  Nikolaus Hansen,et al.  Verallgemeinerte individuelle Schrittweitenregelung in der Evolutionsstrategie , 1998 .

[20]  Giuseppe Cattaneo,et al.  Algorithm engineering , 1999, CSUR.

[21]  R. Eberhart,et al.  Empirical study of particle swarm optimization , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[22]  Richard J. Beckman,et al.  A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code , 2000, Technometrics.

[23]  Hans-Georg Beyer,et al.  The Theory of Evolution Strategies , 2001, Natural Computing Series.

[24]  J. Fox Nonparametric Regression Appendix to An R and S-PLUS Companion to Applied Regression , 2002 .

[25]  Søren Nymand Lophaven,et al.  DACE - A Matlab Kriging Toolbox , 2002 .

[26]  Thomas J. Santner,et al.  Design and analysis of computer experiments , 1998 .

[27]  Thomas Bartz-Beielstein,et al.  Experimental Analysis of Evolution Strategies - Overview and Comprehensive Introduction , 2003 .

[28]  Chun-Hung Chen,et al.  Optimal Computing Budget Allocation of Indifference-zone-selection Procedures , 2003 .

[29]  T. Bartz-Beielstein,et al.  Systematic Analyses of Multi-Objective Evolutionary Algorithms applied to Real-World Problems using Statistical Design of Experiments , 2004 .

[30]  Thomas Bartz-Beielstein,et al.  Analysis of Particle Swarm Optimization Using Computational Statistics , 2004 .

[31]  Thomas Bartz-Beielstein,et al.  Tuning search algorithms for real-world applications: a regression tree based approach , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[32]  Hans-Paul Schwefel,et al.  Evolution strategies – A comprehensive introduction , 2002, Natural Computing.

[33]  Thomas Bartz-Beielstein,et al.  Design and Analysis of Optimization Algorithms Using Computational Statistics , 2004 .

[34]  Thomas Bartz-Beielstein,et al.  Designing particle swarm optimization with regression trees , 2004 .

[35]  Wolfgang Banzhaf,et al.  Total synthesis of algorithmic chemistries , 2005, GECCO '05.

[36]  Thomas Bartz-Beielstein,et al.  Validation and Optimization of an Elevator Simulation Model with Modern Search Heuristics , 2005 .

[37]  Wolfgang Banzhaf,et al.  An Algorithmic Chemistry for Genetic Programming , 2005, EuroGP.

[38]  Thomas Bartz-Beielstein,et al.  New experimentalism applied to evolutionary computation , 2005 .

[39]  Dumitru Dumitrescu,et al.  Elitist generational genetic chromodynamics - a new radii-based evolutionary algorithm for multimodal optimization , 2005, 2005 IEEE Congress on Evolutionary Computation.

[40]  Thomas Bartz-Beielstein,et al.  Evolution Strategies and Threshold Selection , 2005, Hybrid Metaheuristics.

[41]  L. Gwenn Volkert Investigating EA Based Training of HMM using a Sequential Parameter Optimization Approach , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[42]  Thomas Bartz-Beielstein,et al.  Multi-objective evolutionary design of mold temperature control using DACE for parameter optimization , 2007 .

[43]  Thomas Bartz-Beielstein,et al.  Datenanalyse und Prozessoptimierung f"ur Kanalnetze und Kl"aranlagen mit CI-Methoden , 2007 .

[44]  Thomas Bartz-Beielstein How experimental algorithmics can benefit from Mayo’s extensions to Neyman–Pearson theory of testing , 2007, Synthese.

[45]  Thomas Bartz-Beielstein,et al.  Particle Swarm Optimization and Sequential Sampling in Noisy Environments , 2007, Metaheuristics.