Global optimization approaches in protein folding and peptide docking

The recent advances in genetic engineering, high powered computing and global optimization continue to stimulate interest in the area of molecular modeling and protein structure prediction. The goal of these eeorts is the ability to correctly predict native protein conformations and the binding interactions of macromolecules. These two problems currently dominate the eld of computational chemistry and, through the use of detailed molecular models, they have also greatly innuenced research in the area of global optimization. This article examines some aspects related to conformational energy modeling and reviews a variety of global optimization approaches developed for the protein folding and peptide docking problems.

[1]  J. Janin,et al.  Protein‐protein recognition analyzed by docking simulation , 1991, Proteins.

[2]  Harold A. Scheraga,et al.  On the Use of Classical Statistical Mechanics in the Treatment of Polymer Chain Conformation , 1976 .

[3]  Yuko Okamoto,et al.  Prediction of Low-Energy Structures of Met-Enkephalin by Monte Carlo Simulated Annealing , 1992 .

[4]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[5]  Harold A. Scheraga,et al.  A combined iterative and boundary-element approach for solution of the nonlinear Poisson-Boltzmann equation , 1992 .

[6]  I. Kuntz,et al.  Automated docking with grid‐based energy evaluation , 1992 .

[7]  Ajay,et al.  Computational methods to predict binding free energy in ligand-receptor complexes. , 1995, Journal of medicinal chemistry.

[8]  M. L. Connolly Solvent-accessible surfaces of proteins and nucleic acids. , 1983, Science.

[9]  John L. Klepeis,et al.  Predicting solvated peptide conformations via global minimization of energetic atom-to-atom interactions , 1998 .

[10]  H. Scheraga,et al.  On the multiple-minima problem in the conformational analysis of molecules: deformation of the potential energy hypersurface by the diffusion equation method , 1989 .

[11]  R L Jernigan,et al.  A preference‐based free‐energy parameterization of enzyme‐inhibitor binding. Applications to HIV‐1‐protease inhibitor design , 1995, Protein science : a publication of the Protein Society.

[12]  Enrico Di Cera Thermodynamic Theory of Site-Specific Binding Processes in Biological Macromolecules: Local binding processes , 1995 .

[13]  Hagai Meirovitch,et al.  A free energy based Monte Carlo minimization procedure for biomolecules , 1994 .

[14]  B. Lee,et al.  The interpretation of protein structures: estimation of static accessibility. , 1971, Journal of molecular biology.

[15]  M. Karplus,et al.  CHARMM: A program for macromolecular energy, minimization, and dynamics calculations , 1983 .

[16]  H. Scheraga,et al.  Accessible surface areas as a measure of the thermodynamic parameters of hydration of peptides. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Hans-Joachim Böhm,et al.  LUDI: rule-based automatic design of new substituents for enzyme inhibitor leads , 1992, J. Comput. Aided Mol. Des..

[18]  H A Scheraga,et al.  An approach to the multiple-minima problem in protein folding by relaxing dimensionality. Tests on enkephalin. , 1987, Journal of molecular biology.

[19]  Robert P. Sheridan,et al.  Flexibases: A way to enhance the use of molecular docking methods , 1994, J. Comput. Aided Mol. Des..

[20]  P. Kollman,et al.  An all atom force field for simulations of proteins and nucleic acids , 1986, Journal of computational chemistry.

[21]  Andrej Sali,et al.  Thermodynamics and kinetics of protein folding , 1995, Global Minimization of Nonconvex Energy Functions: Molecular Conformation and Protein Folding.

[22]  P. Goodford A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. , 1985, Journal of medicinal chemistry.

[23]  G M Crippen,et al.  Energy embedding of trypsin inhibitor , 1982, Biopolymers.

[24]  C. Floudas Nonlinear and Mixed-Integer Optimization: Fundamentals and Applications , 1995 .

[25]  R. Lavery,et al.  A new approach to the rapid determination of protein side chain conformations. , 1991, Journal of biomolecular structure & dynamics.

[26]  H. Scheraga,et al.  Application of the diffusion equation method for global optimization to oligopeptides , 1992 .

[27]  Young Kee Kang,et al.  Free Energies of Hydration of Solute Molecules. Part 2. Application of the Hydration Shell Model to Nonionic Organic Molecules. , 1987 .

[28]  Matej Oresic,et al.  Tracking metastable states to free-energy global minima , 1995, Global Minimization of Nonconvex Energy Functions: Molecular Conformation and Protein Folding.

[29]  H A Scheraga,et al.  Intermolecular potentials from crystal data. V. Crystal packing of poly(beta-(p-chlorobenzyl)-L-aspartate). , 1974, Macromolecules.

[30]  M. Karplus,et al.  Functionality maps of binding sites: A multiple copy simultaneous search method , 1991, Proteins.

[31]  Christodoulos A. Floudas,et al.  A deterministic global optimization approach for the protein folding problem , 1995, Global Minimization of Nonconvex Energy Functions: Molecular Conformation and Protein Folding.

[32]  M. Snow Powerful simulated‐annealing algorithm locates global minimum of protein‐folding potentials from multiple starting conformations , 1992 .

[33]  S. Kim,et al.  "Soft docking": matching of molecular surface cubes. , 1991, Journal of molecular biology.

[34]  Zhi-jun Wu "-optimal Solutions to Distance Geometry Problems via Global Continuation "-optimal Solutions to Distance Geometry Problems via Global Continuation , 1995 .

[35]  Harold A. Scheraga,et al.  Free energies of hydration of solute molecules. 1. Improvement of the hydration shell model by exact computations of overlapping volumes , 1987 .

[36]  A. Leach A Survey of Methods for Searching the Conformational Space of Small and Medium‐Sized Molecules , 1992 .

[37]  J. Onuchic,et al.  Protein folding funnels: a kinetic approach to the sequence-structure relationship. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[38]  J Moult,et al.  Docking by least-squares fitting of molecular surface patterns. , 1992, Journal of molecular biology.

[39]  Guoliang Xue,et al.  Global Minimization of Nonconvex Energy Functions: Molecular Conformation and Protein Folding, Proceedings of a DIMACS Workshop, USA, March 20-21, 1995 , 1995, Global Minimization of Nonconvex Energy Functions: Molecular Conformation and Protein Folding.

[40]  Harold A. Scheraga,et al.  Intermolecular potentials from crystal data. IV. Application of empirical potentials to the packing configurations and lattice energies in crystals of amino acids , 1974 .

[41]  C A Floudas,et al.  A predictive method for the evaluation of peptide binding in pocket 1 of HLA‐DRB1 via global minimization of energy interactions , 1997, Proteins.

[42]  Thomas F. Coleman,et al.  A parallel build-up algorithm for global energy minimizations of molecular clusters using effective energy simulated annealing , 1993, J. Glob. Optim..

[43]  K. Dill,et al.  CGU: An Algorithm for Molecular Structure Prediction , 1997 .

[44]  David Shalloway,et al.  Packet annealing: a deterministic method for global minimization , 1992 .

[45]  H. Scheraga,et al.  Empirical solvation models can be used to differentiate native from near‐native conformations of bovine pancreatic trypsin inhibitor , 1991, Proteins.

[46]  Huajun Wang Grid‐search molecular accessible surface algorithm for solving the protein docking problem , 1991 .

[47]  I. Kuntz,et al.  Conformational analysis of flexible ligands in macromolecular receptor sites , 1992 .

[48]  D. Romero,et al.  Applications of simulated annealing to the multiple-minima problem in small peptides. , 1991, Journal of biomolecular structure & dynamics.

[49]  Harold A. Scheraga,et al.  Analysis of the Contribution of Internal Vibrations to the Statistical Weights of Equilibrium Conformations of Macromolecules , 1969 .

[50]  H. Scheraga,et al.  Revised algorithms for the build‐up procedure for predicting protein conformations by energy minimization , 1987 .

[51]  P. S. Kim,et al.  Intermediates in the folding reactions of small proteins. , 1990, Annual review of biochemistry.

[52]  Jorge J. Moré,et al.  E-optimal solutions to distance geometry problems via global continuation , 1995, Global Minimization of Nonconvex Energy Functions: Molecular Conformation and Protein Folding.

[53]  A Caflisch,et al.  Monte Carlo docking of oligopeptides to proteins , 1992, Proteins.

[54]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[55]  J M Blaney,et al.  A geometric approach to macromolecule-ligand interactions. , 1982, Journal of molecular biology.

[56]  Harold A. Scheraga,et al.  Structure and free energy of complex thermodynamic systems , 1988 .

[57]  J. Janin,et al.  Computer studies of interactions between macromolecules. , 1987, Progress in biophysics and molecular biology.

[58]  H. Scheraga,et al.  Energy parameters in polypeptides. 9. Updating of geometrical parameters, nonbonded interactions, and hydrogen bond interactions for the naturally occurring amino acids , 1983 .

[59]  M. Levitt,et al.  Realistic simulations of native-protein dynamics in solution and beyond. , 1993, Annual review of biophysics and biomolecular structure.

[60]  S Forrest,et al.  Genetic algorithms , 1996, CSUR.

[61]  Christodoulos A. Floudas,et al.  αBB: A global optimization method for general constrained nonconvex problems , 1995, J. Glob. Optim..

[62]  Christodoulos A. Floudas,et al.  Rigorous convex underestimators for general twice-differentiable problems , 1996, J. Glob. Optim..

[63]  C. Adjiman,et al.  A global optimization method, αBB, for general twice-differentiable constrained NLPs—II. Implementation and computational results , 1998 .

[64]  S. Sun,et al.  Reduced representation model of protein structure prediction: Statistical potential and genetic algorithms , 1993, Protein science : a publication of the Protein Society.

[65]  S. Wodak,et al.  Reaction pathway for the quaternary structure change in hemoglobin , 1985, Biopolymers.

[66]  G. Rose,et al.  Molecular recognition. I. Automatic identification of topographic surface features , 1985, Biopolymers.

[67]  Y. Okamoto,et al.  Alpha-helix folding by Monte Carlo simulated annealing in isolated C-peptide of ribonuclease A. , 1991, Protein engineering.

[68]  Hagai Meirovitch,et al.  Efficiency of monte carlo minimization procedures and their use in analysis of NMR data obtained from flexible peptides , 1997 .

[69]  G. Crippen,et al.  Determination of an empirical energy function for protein conformational analysis by energy embedding , 1987 .

[70]  C. DeLisi,et al.  Determining minimum energy conformations of polypeptides by dynamic programming , 1990, Biopolymers.

[71]  D. Goodsell,et al.  Automated docking of substrates to proteins by simulated annealing , 1990, Proteins.

[72]  Harold A. Scheraga,et al.  The multiple-minima problem in the conformational analysis of polypeptides. III. An Electrostatically Driven Monte Carlo Method: Tests on enkephalin , 1989, Journal of protein chemistry.

[73]  Gennady M Verkhivker,et al.  Empirical free energy calculations of ligand-protein crystallographic complexes. I. Knowledge-based ligand-protein interaction potentials applied to the prediction of human immunodeficiency virus 1 protease binding affinity. , 1995, Protein engineering.

[74]  L. Piela,et al.  Molecular Dynamics on Deformed Potential Energy Hypersurfaces , 1995 .

[75]  S Vajda,et al.  Empirical potentials and functions for protein folding and binding. , 1997, Current opinion in structural biology.

[76]  W. Howe,et al.  Computer design of bioactive molecules: A method for receptor‐based de novo ligand design , 1991, Proteins.

[77]  D. Eisenberg,et al.  Atomic solvation parameters applied to molecular dynamics of proteins in solution , 1992, Protein science : a publication of the Protein Society.

[78]  Hans-Joachim Böhm,et al.  The computer program LUDI: A new method for the de novo design of enzyme inhibitors , 1992, J. Comput. Aided Mol. Des..

[79]  Y Okamoto,et al.  Beta-sheet folding of fragment (16-36) of bovine pancreatic trypsin inhibitor as predicted by Monte Carlo simulated annealing. , 1992, Protein engineering.

[80]  Frank Eisenhaber,et al.  Improved strategy in analytic surface calculation for molecular systems: Handling of singularities and computational efficiency , 1993, J. Comput. Chem..

[81]  Harold A. Scheraga,et al.  Intermolecular potentials from crystal data. III. Determination of empirical potentials and application to the packing configurations and lattice energies in crystals of hydrocarbons, carboxylic acids, amines, and amides , 1974 .

[82]  I. Kuntz,et al.  Structure-based design of nonpeptide inhibitors specific for the human immunodeficiency virus 1 protease. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[83]  Norman L. Allinger,et al.  Conformational analysis. 130. MM2. A hydrocarbon force field utilizing V1 and V2 torsional terms , 1977 .

[84]  H. Scheraga,et al.  Energy parameters in polypeptides. VII. Geometric parameters, partial atomic charges, nonbonded interactions, hydrogen bond interactions, and intrinsic torsional potentials for the naturally occurring amino acids , 1975 .

[85]  M. Lawrence,et al.  CLIX: A search algorithm for finding novel ligands capable of binding proteins of known three‐dimensional structure , 1992, Proteins.

[86]  Robert G. Urban,et al.  MHC Molecules: Expression, Assembly and Function , 1996 .

[87]  K. Sharp,et al.  Calculating the electrostatic potential of molecules in solution: Method and error assessment , 1988 .

[88]  I. Kuntz,et al.  Using shape complementarity as an initial screen in designing ligands for a receptor binding site of known three-dimensional structure. , 1988, Journal of medicinal chemistry.

[89]  Christodoulos A. Floudas,et al.  A Global Optimization , 1992 .

[90]  J. Scott Dixon,et al.  Flexible ligand docking using a genetic algorithm , 1995, J. Comput. Aided Mol. Des..

[91]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[92]  C. Anfinsen,et al.  The kinetics of formation of native ribonuclease during oxidation of the reduced polypeptide chain. , 1961, Proceedings of the National Academy of Sciences of the United States of America.

[93]  F. Stillinger,et al.  Nonlinear optimization simplified by hypersurface deformation , 1988 .

[94]  H. Scheraga,et al.  Use of buildup and energy‐minimization procedures to compute low‐energy structures of the backbone of enkephalin , 1985, Biopolymers.

[95]  H. Scheraga,et al.  Conformational analysis of the 20 naturally occurring amino acid residues using ECEPP. , 1977, Macromolecules.

[96]  Harold A. Scheraga,et al.  Free energies of hydration of solute molecules. 3. Application of the hydration shell model to charged organic molecules , 1987 .

[97]  Malcolm E. Davis,et al.  Electrostatics in biomolecular structure and dynamics , 1990 .

[98]  A. J. Hopfinger,et al.  Polymer-Solvent Interactions for Homopolypeptides in Aqueous Solution , 1971 .

[99]  Don C. Wiley,et al.  Atomic structure of a human MHC molecule presenting an influenza virus peptide , 1992, Nature.

[100]  Chris Sander,et al.  The double cubic lattice method: Efficient approaches to numerical integration of surface area and volume and to dot surface contouring of molecular assemblies , 1995, J. Comput. Chem..

[101]  Christodoulos A. Floudas,et al.  Deterministic Global Optimization in Design, Control, and Computational Chemistry , 1997 .

[102]  C. DeLisi,et al.  Necessary conditions for avoiding incorrect polypeptide folds in conformational search by energy minimization , 1993, Biopolymers.

[103]  J. Janin,et al.  Computer analysis of protein-protein interaction. , 1978, Journal of molecular biology.

[104]  Xin Liu,et al.  Protein Conformation of a Lattice Model Using Tabu Search , 1997, J. Glob. Optim..

[105]  Panos M. Pardalos,et al.  Optimization methods for computing global minima of nonconvex potential energy functions , 1994, J. Glob. Optim..

[106]  P. A. Peterson,et al.  Crystal structures of two viral peptides in complex with murine MHC class I H-2Kb. , 1994, Science.

[107]  H A Scheraga,et al.  An approach to the multiple-minima problem by relaxing dimensionality. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[108]  Richard S. Judson,et al.  Docking flexible molecules: A case study of three proteins , 1995, J. Comput. Chem..

[109]  Sergio H. Rotstein,et al.  GroupBuild: a fragment-based method for de novo drug design , 1994 .

[110]  M. L. Connolly Analytical molecular surface calculation , 1983 .

[111]  Christodoulos A. Floudas,et al.  A global optimization method, αBB, for process design , 1996 .

[112]  Yuko Okamoto,et al.  Prediction of peptide conformation by multicanonical algorithm: New approach to the multiple‐minima problem , 1993, J. Comput. Chem..

[113]  Christodoulos A. Floudas,et al.  Global optimization of MINLP problems in Process Synthesis and Design , 1997 .

[114]  Peter A. Kollman,et al.  FREE ENERGY CALCULATIONS : APPLICATIONS TO CHEMICAL AND BIOCHEMICAL PHENOMENA , 1993 .

[115]  Harold A. Scheraga,et al.  Some approaches to the multiple-minima problem in protein folding , 1995, Global Minimization of Nonconvex Energy Functions: Molecular Conformation and Protein Folding.

[116]  P. Flory,et al.  Foundations of Rotational Isomeric State Theory and General Methods for Generating Configurational Averages , 1974 .

[117]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[118]  Stephen R. Wilson,et al.  Conformational Analysis of Flexible Molecules: Location of the Global Minimum Energy Conformation by the Simulated Annealing Method , 1988 .

[119]  C. Floudas,et al.  A deterministic global optimization approach for molecular structure determination , 1994 .

[120]  H A Scheraga,et al.  Empirical solvation models in the context of conformational energy searches: Application to bovine pancreatic trypsin inhibitor , 1992, Proteins.

[121]  J. Skehel,et al.  Refinement of the influenza virus hemagglutinin by simulated annealing. , 1991, Journal of molecular biology.

[122]  Kenneth M. Merz,et al.  The application of the genetic algorithm to the minimization of potential energy functions , 1993, J. Glob. Optim..

[123]  Yuko Okamoto,et al.  Calculation of hydration free energy for a solute with many atomic sites using the RISM theory: A robust and efficient algorithm , 1997 .

[124]  Jian Shen,et al.  Calculation of binding energy differences for receptor–ligand systems using the Poisson‐Boltzmann method , 1995, J. Comput. Chem..

[125]  Norman L. Allinger,et al.  Molecular mechanics. The MM3 force field for hydrocarbons. 3. The van der Waals' potentials and crystal data for aliphatic and aromatic hydrocarbons , 1989 .

[126]  M. Sippl Calculation of conformational ensembles from potentials of mena force , 1990 .

[127]  Christodoulos A. Floudas,et al.  Global optimization for molecular conformation problems , 1993, Ann. Oper. Res..

[128]  Yuko Okamoto,et al.  Numerical comparisons of three recently proposed algorithms in the protein folding problem , 1997, J. Comput. Chem..

[129]  Werner Braun,et al.  Minimization of empirical energy functions in proteins including hydrophobic surface area effects , 1993, J. Comput. Chem..

[130]  H A Scheraga,et al.  Energy parameters in polypeptides. V. An empirical hydrogen bond potential function based on molecular orbital calculations. , 1972, The Journal of physical chemistry.

[131]  Randy J. Read,et al.  Multiple-Start Monte Carlo Docking of Flexible Ligands , 1994 .

[132]  H. Scheraga,et al.  Energy parameters in polypeptides. 10. Improved geometrical parameters and nonbonded interactions for use in the ECEPP/3 algorithm, with application to proline-containing peptides , 1994 .

[133]  Y. Okamoto,et al.  A prediction of tertiary structures of peptide by the Monte Carlo simulated annealing method. , 1989, Protein engineering.

[134]  H A Scheraga,et al.  The Electrostatically Driven Monte Carlo method: Application to conformational analysis of decaglycine , 1991, Biopolymers.

[135]  Juan C. Meza,et al.  Do intelligent configuration search techniques outperform random search for large molecules , 1992 .

[136]  Yuko Okamoto,et al.  Comparative Study of Multicanonical and Simulated Annealing Algorithms in the Protein Folding Problem , 1994 .

[137]  Berg,et al.  Multicanonical ensemble: A new approach to simulate first-order phase transitions. , 1992, Physical review letters.

[138]  A. Brünger Crystallographic refinement by simulated annealing. Application to a 2.8 A resolution structure of aspartate aminotransferase. , 1988, Journal of molecular biology.

[139]  Gordon M. Crippen,et al.  Global energy minimization by rotational energy embedding , 1990, J. Chem. Inf. Comput. Sci..

[140]  John H. Holland,et al.  Genetic Algorithms and the Optimal Allocation of Trials , 1973, SIAM J. Comput..

[141]  I. Kuntz,et al.  Protein docking and complementarity. , 1991, Journal of molecular biology.

[142]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[143]  H A Scheraga,et al.  On the multiple‐minima problem in the conformational analysis of polypeptides. I. Backbone degrees of freedom for a perturbed α‐helix , 1987 .

[144]  Charles L. Brooks,et al.  Simulations of peptide conformational dynamics and thermodynamics , 1993 .

[145]  M. L. Connolly Shape complementarity at the hemoglobin α1β1 subunit interface , 1986 .

[146]  Hagai Meirovitch,et al.  New Theoretical Methodology for Elucidating the Solution Structure of Peptides from NMR Data. 3. Solvation Effects , 1996 .

[147]  Norman L. Allinger,et al.  Molecular mechanics. The MM3 force field for hydrocarbons. 2. Vibrational frequencies and thermodynamics , 1989 .

[148]  David Chandler,et al.  Optimized Cluster Expansions for Classical Fluids. II. Theory of Molecular Liquids , 1972 .

[149]  Robert P. Sheridan,et al.  FLOG: A system to select ‘quasi-flexible’ ligands complementary to a receptor of known three-dimensional structure , 1994, J. Comput. Aided Mol. Des..

[150]  R Garduño-Juárez,et al.  The multiple-minima problem in small peptides revisited. The Threshold Accepting approach. , 1992, Journal of biomolecular structure & dynamics.

[151]  Norman L. Allinger,et al.  Molecular mechanics. The MM3 force field for hydrocarbons. 1 , 1989 .

[152]  David Chandler,et al.  Optimized Cluster Expansions for Classical Fluids. I. General Theory and Variational Formulation of the Mean Spherical Model and Hard Sphere Percus‐Yevick Equations , 1972 .

[153]  D. Osguthorpe,et al.  Structure and energetics of ligand binding to proteins: Escherichia coli dihydrofolate reductase‐trimethoprim, a drug‐receptor system , 1988, Proteins.

[154]  A. Gronenborn,et al.  Determination of three-dimensional structures of proteins by simulated annealing with interproton distance restraints. Application to crambin, potato carboxypeptidase inhibitor and barley serine proteinase inhibitor 2. , 1988, Protein engineering.

[155]  P A Kollman,et al.  What determines the strength of noncovalent association of ligands to proteins in aqueous solution? , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[156]  David Shalloway,et al.  Application of the renormalization group to deterministic global minimization of molecular conformation energy functions , 1992, J. Glob. Optim..

[157]  C. DeLisi,et al.  Computing the structure of bound peptides. Application to antigen recognition by class I major histocompatibility complex receptors. , 1993, Journal of molecular biology.

[158]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[159]  D. Case Normal mode analysis of protein dynamics , 1994 .

[160]  Arnold Neumaier,et al.  Molecular Modeling of Proteins and Mathematical Prediction of Protein Structure , 1997, SIAM Rev..

[161]  R. Glen,et al.  Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. , 1995, Journal of molecular biology.

[162]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[163]  Garland R. Marshall,et al.  VALIDATE: A New Method for the Receptor-Based Prediction of Binding Affinities of Novel Ligands , 1996 .

[164]  Harold A. Scheraga,et al.  Free energies of hydration of solute molecules. IV: Revised treatment of the hydration shell model , 1988 .

[165]  M. Sippl Calculation of conformational ensembles from potentials of mean force. An approach to the knowledge-based prediction of local structures in globular proteins. , 1990, Journal of molecular biology.

[166]  Akbar Nayeem,et al.  A comparative study of the simulated‐annealing and Monte Carlo‐with‐minimization approaches to the minimum‐energy structures of polypeptides: [Met]‐enkephalin , 1991 .

[167]  R. Abagyan,et al.  Biased probability Monte Carlo conformational searches and electrostatic calculations for peptides and proteins. , 1994, Journal of molecular biology.

[168]  G. M. Crippen,et al.  Why energy embedding works , 1987 .

[169]  M. Levitt Protein folding by restrained energy minimization and molecular dynamics. , 1983, Journal of molecular biology.

[170]  R. Read,et al.  A multiple-start Monte Carlo docking method. , 1992, Proteins.

[171]  Werner Braun,et al.  Efficient search for all low energy conformations of polypeptides by Monte Carlo methods , 1991 .

[172]  H. Scheraga,et al.  Monte Carlo-minimization approach to the multiple-minima problem in protein folding. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[173]  Harold A. Scheraga,et al.  Conformational Energy Calculations on Polypeptides and Proteins. , 1995 .

[174]  C. Levinthal Are there pathways for protein folding , 1968 .

[175]  Scott M. Le Grand,et al.  The Genetic Algorithm and Protein Tertiary Structure Prediction , 1994 .

[176]  Peter A. Kollman,et al.  Crown Ether-Neutral Molecule Interactions Studied by Molecular Mechanics, Normal Mode Analysis, and Free Energy Perturbation Calculations. Near Quantitative Agreement Between Theory and Experimental Binding Free Energies , 1989 .

[177]  J. Ben Rosen,et al.  Molecular structure determination by convex, global underestimation of local energy minima , 1995, Global Minimization of Nonconvex Energy Functions: Molecular Conformation and Protein Folding.

[178]  M. Karplus,et al.  Method for estimating the configurational entropy of macromolecules , 1981 .

[179]  A. Warshel,et al.  Electrostatic energy and macromolecular function. , 1991, Annual review of biophysics and biophysical chemistry.

[180]  Charles DeLisi,et al.  Peptide docking using dynamic programming , 1996, J. Comput. Chem..

[181]  Christodoulos A Floudas,et al.  Global minimum potential energy conformations of small molecules , 1994, J. Glob. Optim..

[182]  B. Berg,et al.  Multicanonical algorithms for first order phase transitions , 1991 .

[183]  Christopher A. Reynolds,et al.  Free energy calculations in molecular biophysics , 1992 .

[184]  M. Karplus,et al.  Multiple copy simultaneous search and construction of ligands in binding sites: application to inhibitors of HIV-1 aspartic proteinase. , 1993, Journal of medicinal chemistry.

[185]  P. Pardalos,et al.  Handbook of global optimization , 1995 .

[186]  A. D. McLachlan,et al.  Solvation energy in protein folding and binding , 1986, Nature.

[187]  H. Scheraga,et al.  On the multiple‐minima problem in the conformational analysis of polypeptides. II. An electrostatically driven Monte Carlo method—tests on poly(L‐alanine) , 1988, Biopolymers.