A Direct Method to Learn States and Parameters of Ordinary Differential Equations

Though ordinary differential equations (ODE) are used extensively in science and engineering, the task of learning ODE parameters from noisy observations still presents challenges. To address these challenges, we propose a direct method that involves alternating minimization of an objective function over the filtered states and parameters. This objective function directly measures how well the filtered states and parameters satisfy the ODE, in contrast to many existing methods that use separate objectives over the observations, filtered states, and parameters. As we show on several ODE systems, as compared to state-of-the-art methods, the direct method exhibits increased robustness (to noise, parameter initialization, and hyperparameters), decreased training times, and improved accuracy in estimating both filtered states and parameters. The direct method involves only one hyperparameter that plays the role of an inverse step size. We show how the direct method can be used with general multistep numerical discretizations, and demonstrate its performance on systems with up to d=40 dimensions. The code of our algorithms can be found in the authors' web pages.

[1]  Daniela Calvetti,et al.  Linear multistep methods, particle filtering and sequential Monte Carlo , 2013 .

[2]  Hulin Wu,et al.  Parameter Estimation for Differential Equation Models Using a Framework of Measurement Error in Regression Models , 2008, Journal of the American Statistical Association.

[3]  K. Emanuel,et al.  Optimal Sites for Supplementary Weather Observations: Simulation with a Small Model , 1998 .

[4]  Stefan Bauer,et al.  Scalable Variational Inference for Dynamical Systems , 2017, NIPS.

[5]  L Wang,et al.  Robust Estimation for Ordinary Differential Equation Models , 2011, Biometrics.

[6]  Daniela Calvetti,et al.  Parameter estimation for stiff deterministic dynamical systems via ensemble Kalman filter , 2014 .

[7]  M. Benson,et al.  Parameter fitting in dynamic models , 1979 .

[8]  Dirk Husmeier,et al.  ODE parameter inference using adaptive gradient matching with Gaussian processes , 2013, AISTATS.

[9]  C. R. Jones,et al.  Determination of Rate Constants for Complex Kinetics Models , 1967 .

[10]  J. Varah A Spline Least Squares Method for Numerical Parameter Estimation in Differential Equations , 1982 .

[11]  J Kurths,et al.  Estimation of parameters and unobserved components for nonlinear systems from noisy time series. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  Charles L. Byrne,et al.  Alternating Minimization as Sequential Unconstrained Minimization: A Survey , 2012, Journal of Optimization Theory and Applications.

[13]  Luigi Grippo,et al.  On the convergence of the block nonlinear Gauss-Seidel method under convex constraints , 2000, Oper. Res. Lett..

[14]  P. James McLellan,et al.  Parameter estimation in continuous-time dynamic models using principal differential analysis , 2006, Comput. Chem. Eng..

[15]  M. Newville,et al.  Lmfit: Non-Linear Least-Square Minimization and Curve-Fitting for Python , 2014 .

[16]  Pramod K. Varshney,et al.  Convergence Analysis of Proximal Gradient with Momentum for Nonconvex Optimization , 2017, ICML.

[17]  Stephen P. Boyd,et al.  Proximal Algorithms , 2013, Found. Trends Optim..

[18]  J. NAGUMOt,et al.  An Active Pulse Transmission Line Simulating Nerve Axon , 2006 .

[19]  Alfred J. Lotka,et al.  The growth of mixed populations: Two species competing for a common food supply , 1978 .

[20]  Charles L. Byrne,et al.  Alternating Minimization, Proximal Minimization and Optimization Transfer Are Equivalent , 2015, 1512.03034.

[21]  R. Palais,et al.  Differential Equations, Mechanics, and Computation , 2012 .

[22]  Jiguo Cao,et al.  Estimating dynamic models for gene regulation networks , 2008, Bioinform..

[23]  R. FitzHugh Impulses and Physiological States in Theoretical Models of Nerve Membrane. , 1961, Biophysical journal.

[24]  Yonathan Bard,et al.  Nonlinear parameter estimation , 1974 .

[25]  Itai Dattner,et al.  Optimal rate of direct estimators in systems of ordinary differential equations linear in functions of the parameters , 2013 .

[26]  R. Barber,et al.  Alternating minimization and alternating descent over nonconvex sets , 2017, 1709.04451.

[27]  Mark A. Girolami,et al.  Bayesian inference for differential equations , 2008, Theor. Comput. Sci..

[28]  L. Hosten,et al.  A comparative study of short cut procedures for parameter estimation in differential equations , 1979 .

[29]  O. Rössler An equation for continuous chaos , 1976 .

[30]  Jiguo Cao,et al.  Parameter estimation for differential equations: a generalized smoothing approach , 2007 .

[31]  Chris A. J. Klaassen,et al.  √n-consistent parameter estimation for systems of ordinary differential equations : bypassing numerical integration via smoothing , 2010, 1007.3880.

[32]  Neil D. Lawrence,et al.  Accelerating Bayesian Inference over Nonlinear Differential Equations with Gaussian Processes , 2008, NIPS.