Corrigendum: Chromatic acclimation and population dynamics of green sulfur bacteria grown with spectrally tailored light

[1]  D. Kehoe,et al.  Control of a four-color sensing photoreceptor by a two-color sensing photoreceptor reveals complex light regulation in cyanobacteria , 2013, Proceedings of the National Academy of Sciences.

[2]  Jennifer C. Brookes,et al.  Atomistic study of energy funneling in the light-harvesting complex of green sulfur bacteria. , 2013, Journal of the American Chemical Society.

[3]  Robert Eugene Blankenship,et al.  Chlorosome antenna complexes from green photosynthetic bacteria , 2013, Photosynthesis Research.

[4]  Ying Xu,et al.  Temperature shift effect on the Chlorobaculum tepidum chlorosomes , 2013, Photosynthesis Research.

[5]  Alán Aspuru-Guzik,et al.  Memory-Assisted Exciton Diffusion in the Chlorosome Light-Harvesting Antenna of Green Sulfur Bacteria. , 2012, The journal of physical chemistry letters.

[6]  D. Kehoe,et al.  Light-dependent attenuation of phycoerythrin gene expression reveals convergent evolution of green light sensing in cyanobacteria , 2011, Proceedings of the National Academy of Sciences.

[7]  K. Tang,et al.  Both Forward and Reverse TCA Cycles Operate in Green Sulfur Bacteria* , 2010, The Journal of Biological Chemistry.

[8]  R. Lebrun,et al.  Antenna mixing in photosynthetic membranes from Phaeospirillum molischianum , 2010, Proceedings of the National Academy of Sciences.

[9]  N. Nielsen,et al.  A model of the protein–pigment baseplate complex in chlorosomes of photosynthetic green bacteria , 2010, Photosynthesis Research.

[10]  Z. Namsaraev Application of extinction coefficients for quantification of chlorophylls and bacteriochlorophylls , 2009, Microbiology.

[11]  Donald A. Bryant,et al.  Alternating syn-anti bacteriochlorophylls form concentric helical nanotubes in chlorosomes , 2009, Proceedings of the National Academy of Sciences.

[12]  Meike T. Wortel,et al.  The Timescale of Phenotypic Plasticity and Its Impact on Competition in Fluctuating Environments , 2008, The American Naturalist.

[13]  Eugene I Shakhnovich,et al.  Understanding protein evolution: from protein physics to Darwinian selection. , 2008, Annual review of physical chemistry.

[14]  D. Bryant,et al.  Bacteriochlorophyllide c C-82 and C-121 Methyltransferases Are Essential for Adaptation to Low Light in Chlorobaculum tepidum , 2007, Journal of bacteriology.

[15]  Simon Scheuring,et al.  Chromatic Adaptation of Photosynthetic Membranes , 2005, Science.

[16]  Jörg Overmann,et al.  An obligately photosynthetic bacterial anaerobe from a deep-sea hydrothermal vent. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[17]  R. De Wit,et al.  The impact of different intensities of green light on the bacteriochlorophyll homologue composition of the Chlorobiaceae Prosthecochloris aestuarii and Chlorobium phaeobacteroides. , 2004, Microbiology.

[18]  Alan D. Chave,et al.  Ambient light emission from hydrothermal vents on the Mid‐Atlantic Ridge , 2002 .

[19]  D. Bryant,et al.  Chlorobium tepidum Mutant Lacking Bacteriochlorophyll c Made by Inactivation of the bchK Gene, Encoding Bacteriochlorophyll c Synthase , 2002, Journal of bacteriology.

[20]  E. Buitenhuis,et al.  Light responses in the green sulfur bacterium Prosthecochloris aestuarii: changes in prosthecae length, ultrastructure, and antenna pigment composition , 2001, Archives of Microbiology.

[21]  A. Holzwarth,et al.  Exciton dynamics in the chlorosomal antennae of the green bacteria Chloroflexus aurantiacus and Chlorobium tepidum. , 2000, Biophysical journal.

[22]  C. Borrego,et al.  Light intensity effects on pigment composition and organisation in the green sulfur bacterium Chlorobium tepidum , 1999, Photosynthesis Research.

[23]  P. Malý,et al.  Fast Energy Transfer and Exciton Dynamics in Chlorosomes of the Green Sulfur Bacterium Chlorobium tepidum , 1998 .

[24]  C. Borrego,et al.  Rearrangement of light harvesting bacteriochlorophyll homologues as a response of green sulfur bacteria to low light intensities , 1995, Photosynthesis Research.

[25]  Robert Eugene Blankenship,et al.  Ultrafast energy transfer in light-harvesting chlorosomes from the green sulfur bacterium Chlorobium tepidum. , 1995, Chemical physics.

[26]  X. Vila,et al.  Effects of light quality on the physiology and the ecology of planktonic green sulfur bacteria in lakes , 1994, Photosynthesis Research.

[27]  R. P. Cox,et al.  Effects of illumination intensity on bacteriochlorophyllc homolog distribution inChloroflexus aurantiacus grown under controlled conditions , 1994, Photosynthesis Research.

[28]  Carl R. Woese,et al.  A thermophilic green sulfur bacterium from New Zealand hot springs, Chlorobium tepidum sp. nov. , 1991, Archives of Microbiology.

[29]  J. Ormerod,et al.  Effect of light internsity on vesicle formation in Chlorobium , 1978, Archives of Microbiology.

[30]  Trevor Platt,et al.  Mathematical formulation of the relationship between photosynthesis and light for phytoplankton , 1976 .

[31]  R. Emerson,et al.  Kinetics of Photosynthesis , 1934, Nature.

[32]  D. Kehoe,et al.  Emerging perspectives on the mechanisms, regulation, and distribution of light color acclimation in cyanobacteria. , 2012, Molecular plant.

[33]  Thomas E Hanson,et al.  Chlorobaculum tepidum regulates chlorosome structure and function in response to temperature and electron donor availability , 2008, Photosynthesis Research.

[34]  J. Overmann The Family Chlorobiaceae , 2006 .

[35]  J. Olson The FMO Protein , 2004, Photosynthesis Research.

[36]  H. Jannasch,et al.  An extremely low-light-adapted phototrophic sulfur bacterium from the Black Sea , 2000 .

[37]  H. Tamiya Some theoretical notes on the kinetics of algal growth , 1951 .