Self-diffusion coefficients for water and organic solvents at high temperatures along the coexistence curve.

The self-diffusion coefficients D for water, benzene, and cyclohexane are determined by using the pulsed-field-gradient spin echo method in high-temperature conditions along the liquid branch of the coexistence curve: 30-350 degrees C (1.0-0.58 g cm(-3)), 30-250 degrees C (0.87-0.56 g cm(-3)), and 30-250 degrees C (0.77-0.48 g cm(-3)) for water, benzene, and cyclohexane, respectively. The temperature and density effects are separated and their origins are discussed by examining the diffusion data over a wide range of thermodynamic states. The temperature dependence of the self-diffusion coefficient for water is larger than that for organic solvents due to the large contribution of the attractive hydrogen-bonding interaction in water. The density dependence is larger for organic solvents than for water. The difference is explained in terms of the van der Waals picture that the structure of nonpolar organic solvents is determined by the packing effect due to the repulsion or exclusion volumes. The dynamic solvation shell scheme [K. Yoshida et al., J. Chem. Phys. 127, 174509 (2007)] is applied for the molecular interpretation of the translational dynamics with the aid of molecular dynamics simulation. In water at high temperatures, the velocity relaxation is not completed before the relaxation of the solvation shell (mobile-shell type) as a result of the breakdown of the hydrogen-bonding network. In contrast, the velocity relaxation of benzene is rather confined within the solvation shell (in-shell type).

[1]  T. Brill,et al.  Spectroscopy of Hydrothermal Reactions 22. The Effects of Cations on the Decarboxylation Kinetics of Trifluoroacetate, Cyanoacetate, Propiolate, and Malonate Ions , 2002 .

[2]  Stephan Kabelac,et al.  Transport coefficients of the Lennard-Jones model fluid. II Self-diffusion. , 2004, The Journal of chemical physics.

[3]  Kazimierz Krynicki,et al.  Pressure and temperature dependence of self-diffusion in water , 1978 .

[4]  N. Trappeniers,et al.  Proton-spin-lattice relaxation and self-diffusion in methanes: IV. Self-diffusion in methane , 1971 .

[5]  Eric J. Beckman,et al.  Supercritical and near-critical CO2 in green chemical synthesis and processing , 2004 .

[6]  SOLVATION EFFECTS ON KINETICS OF METHYLENE CHLORIDE REACTIONS IN SUB- AND SUPERCRITICAL WATER : THEORY, EXPERIMENT, AND AB INITIO CALCULATIONS , 1998, cond-mat/9807215.

[7]  N. Matubayasi,et al.  Self-diffusion coefficients for water and organic solvents in extremely low-density supercritical states , 2009 .

[8]  D. Hasha,et al.  Density effects of transport properties in liquid cyclohexane , 1980 .

[9]  N. Trappeniers,et al.  Self-diffusion in gaseous and liquid ethylene , 1981 .

[10]  H. Weingärtner,et al.  Supercritical water as a solvent. , 2005, Angewandte Chemie.

[11]  N. Matubayasi,et al.  Erratum: “Self-diffusion of supercritical water in extremely low-density region” [J. Chem. Phys.125, 074307 (2006)] , 2007 .

[12]  N. Matubayasi,et al.  Kinetic study on disproportionations of C1 aldehydes in supercritical water: methanol from formaldehyde and formic acid. , 2007, The journal of physical chemistry. A.

[13]  Joseph M. DeSimone,et al.  Practical Approaches to Green Solvents , 2002, Science.

[14]  P. Stilbs,et al.  Fourier transform pulsed-gradient spin-echo studies of molecular diffusion , 1987 .

[15]  Jeffrey S. Seewald,et al.  Evidence for metastable equilibrium between hydrocarbons under hydrothermal conditions , 1994, Nature.

[16]  D. J. Wilbur,et al.  Self‐diffusion in compressed liquid heavy water , 1976 .

[17]  T. G. Cowling,et al.  The mathematical theory of non-uniform gases , 1939 .

[18]  N. Matubayasi,et al.  Kinetic and equilibrium study on formic acid decomposition in relation to the water-gas-shift reaction. , 2006, The journal of physical chemistry. A.

[19]  Nobuyuki Matubayasi,et al.  Solvation shell dynamics studied by molecular dynamics simulation in relation to the translational and rotational dynamics of supercritical water and benzene. , 2007, The Journal of chemical physics.

[20]  J. E. Tanner,et al.  Spin diffusion measurements : spin echoes in the presence of a time-dependent field gradient , 1965 .

[21]  R. D. Goodwin,et al.  Benzene Thermophysical Properties from 279 to 900 K at Pressures to 1000 Bar , 1988 .

[22]  J. Jonas,et al.  Dense liquids. II. The effect of density and temperature on viscosity of tetramethylsilane and benzene , 1975 .

[23]  Felix Franks,et al.  Water:A Comprehensive Treatise , 1972 .

[24]  William L. Jorgensen,et al.  Aromatic-aromatic interactions: free energy profiles for the benzene dimer in water, chloroform, and liquid benzene , 1990 .

[25]  Naoko Akiya,et al.  Roles of water for chemical reactions in high-temperature water. , 2002, Chemical reviews.

[26]  N. Matubayasi,et al.  Mechanisms and Kinetics of Acetaldehyde Reaction in Supercritical Water: Noncatalytic Disproportionation, Condensation, and Decarbonylation , 2004 .

[27]  R. Mountain Molecular dynamics investigation of expanded water at elevated temperatures , 1989 .

[28]  W. Lamb,et al.  NMR study of compressed supercritical water , 1981 .

[29]  C. F. Curtiss,et al.  Molecular Theory Of Gases And Liquids , 1954 .

[30]  N. Matubayasi,et al.  Self-diffusion of supercritical water in extremely low-density region. , 2006, The Journal of chemical physics.

[31]  J. Jonas,et al.  Dense liquids. I. The effect of density and temperature on self‐diffusion of tetramethylsilane and benzene‐d6 , 1975 .

[32]  N. Matubayasi,et al.  Super- and subcritical hydration of nonpolar solutes. I. Thermodynamics of hydration , 2000 .

[33]  K. R. Harris The density dependence of the self-diffusion coefficient of methane at −50°, 25° and 50°C , 1978 .

[34]  A. Weiss,et al.  Transport Properties of Liquids. VIII. Molar Volume and Selfdiffusion of Organic Liquids at Pressures up to 200 MPa , 1990 .

[35]  S. G. Penoncello,et al.  A thermodynamic property formulation for cyclohexane , 1995 .

[36]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[37]  Nobuyuki Matubayasi,et al.  Structural study of supercritical water. I. Nuclear magnetic resonance spectroscopy , 1997 .

[38]  H. Luigjes,et al.  An NMR spin-echo study of self-diffusion in xenon , 1989 .

[39]  R. Hausser,et al.  Kernmagnetische Messungen von Selbstdiffusions-Koeffizienten in Wasser und Benzol bis zum kritischen Punkt , 1966 .

[40]  N. Matubayasi,et al.  A new high-temperature multinuclear-magnetic-resonance probe and the self-diffusion of light and heavy water in sub- and supercritical conditions. , 2005, The Journal of chemical physics.

[41]  I. R. Mcdonald,et al.  Theory of simple liquids , 1998 .

[42]  N. Matubayasi,et al.  Structural study of supercritical water. III. Rotational dynamics , 2001 .