Geometric asymptotics and the logarithmic Sobolev inequality

Abstract The logarithmic Sobolev inequality is developed as a geometric asymptotic estimate with respect to Lebesgue measure. Two short geometric arguments are given to derive (1) the logarithmic Sobolev inequality from the isoperimetric inequality and (2) Nash's inequality with an asymptotically sharp constant from the logarithmic Sobolev inequality. In addition, the Fisher information form of the logarithmic Sobolev inequality is obtained directly from the isoperimetric inequality. A new formulation of the logarithmic Sobolev inequality is given for hyperbolic space which can be interpreted as an “uncertainty principle” in this setting.

[1]  Elliott H. Lieb,et al.  Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities , 1983 .

[2]  T. Aubin,et al.  Problèmes isopérimétriques et espaces de Sobolev , 1976 .

[3]  William Beckner,et al.  On Sharp Sobolev Embedding and The Logarithmic Sobolev Inequality , 1998 .

[4]  G. Talenti,et al.  Best constant in Sobolev inequality , 1976 .

[5]  E. Carlen,et al.  Sharp constant in Nash's inequality , 1993 .

[6]  W. Beckner 2. Geometric Inequalities in Fourier Analysis , 1995 .

[7]  William Beckner Geometric proof of Nash's inequality , 1998 .

[8]  William Beckner,et al.  Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality , 1993 .

[9]  E. Stein,et al.  Estimates for the complex and analysis on the heisenberg group , 1974 .

[10]  W. Beckner A generalized Poincaré inequality for Gaussian measures , 1989 .

[11]  W. Beckner Sobolev inequalities, the Poisson semigroup, and analysis on the sphere Sn. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Meijun Zhu,et al.  Sharp Sobolev trace inequalities on Riemannian manifolds with boundaries , 1997 .

[13]  E. Lieb The Stability of Matter: From Atoms to Stars , 2001 .

[14]  Xu-Jia Wang,et al.  Sharp constant in a Sobolev inequality , 1993 .

[15]  P. Marquardt,et al.  The Uncertainty Principle Revisited , 1994 .

[16]  William Beckner,et al.  Pitt’s inequality and the uncertainty principle , 1995 .

[17]  W. Beckner Inequalities in Fourier analysis , 1975 .

[18]  William P. Ziemer,et al.  Minimal rearrangements of Sobolev functions. , 1987 .

[19]  E. Davies,et al.  Heat kernels and spectral theory , 1989 .

[20]  A. J. Stam Some Inequalities Satisfied by the Quantities of Information of Fisher and Shannon , 1959, Inf. Control..

[21]  Fred B. Weissler,et al.  Logarithmic Sobolev inequalities for the heat-diffusion semigroup , 1978 .

[22]  W. Beckner Logarithmic Sobolev inequalities and the existence of singular integrals , 1997 .

[23]  J. Nash Continuity of Solutions of Parabolic and Elliptic Equations , 1958 .

[24]  L. Gross LOGARITHMIC SOBOLEV INEQUALITIES. , 1975 .

[25]  William Beckner,et al.  Sharp inequalities and geometric manifolds , 1997 .

[26]  John M. Lee,et al.  Extremals for the Sobolev inequality on the Heisenberg group and the CR Yamabe problem , 1988 .