Single-Cell Isolation and Gene Analysis: Pitfalls and Possibilities

During the last two decades single-cell analysis (SCA) has revealed extensive phenotypic differences within homogenous cell populations. These phenotypic differences are reflected in the stochastic nature of gene regulation, which is often masked by qualitatively and quantitatively averaging in whole tissue analyses. The ability to isolate transcripts and investigate how genes are regulated at the single cell level requires highly sensitive and refined methods. This paper reviews different strategies currently used for SCA, including harvesting, reverse transcription, and amplification of the RNA, followed by methods for transcript quantification. The review provides the historical background to SCA, discusses limitations, and current and future possibilities in this exciting field of research.

[1]  P. V. von Hippel,et al.  Neutral Salts: The Generality of Their Effects on the Stability of Macromolecular Conformations , 1964, Science.

[2]  H. Freeze,et al.  Thermus aquaticus gen. n. and sp. n., a Nonsporulating Extreme Thermophile , 1969, Journal of bacteriology.

[3]  S. Mizutani,et al.  Viral RNA-dependent DNA Polymerase: RNA-dependent DNA Polymerase in Virions of Rous Sarcoma Virus , 1970, Nature.

[4]  C. Tanford,et al.  The solubility of amino acids, diglycine, and triglycine in aqueous guanidine hydrochloride solutions. , 1970, The Journal of biological chemistry.

[5]  D. Baltimore Viral RNA-dependent DNA Polymerase: RNA-dependent DNA Polymerase in Virions of RNA Tumour Viruses , 1970, Nature.

[6]  H. Khorana,et al.  Studies on polynucleotides. XCVI. Repair replications of short synthetic DNA's as catalyzed by DNA polymerases. , 1971, Journal of molecular biology.

[7]  C. Dingman,et al.  Role of molecular conformation in determining the electrophoretic properties of polynucleotides in agarose-acrylamide composite gels. , 1971, Biochemistry.

[8]  G. Temple,et al.  In vitro synthesis of DNA complementary to rabbit reticulocyte 10S RNA. , 1972, Nature: New biology.

[9]  P. Borst,et al.  The gel electrophoresis of DNA. , 1972, Biochimica et biophysica acta.

[10]  J. Gordon Denaturation of globular proteins. Interaction of guanidinium salts with three proteins. , 1972, Biochemistry.

[11]  B Sugden,et al.  Detection of two restriction endonuclease activities in Haemophilus parainfluenzae using analytical agarose--ethidium bromide electrophoresis. , 1973, Biochemistry.

[12]  J. Trela,et al.  Deoxyribonucleic acid polymerase from the extreme thermophile Thermus aquaticus , 1976, Journal of bacteriology.

[13]  T. Maniatis,et al.  Enzymatic in vitro synthesis of globin genes , 1976, Cell.

[14]  R G Sweet,et al.  Fluorescence Activated Cell Sorting , 2020, Definitions.

[15]  K. Mullis,et al.  Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. , 1985, Science.

[16]  Henry A. Erlich,et al.  Enzymatic amplification of ?-globin genomic sequences and restriction site analysis for diagnosis of , 1985 .

[17]  K. Mullis,et al.  Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. , 1986, Cold Spring Harbor symposia on quantitative biology.

[18]  Henry A. Erlich,et al.  Amplification and analysis of DNA sequences in single human sperm and diploid cells , 1988, Nature.

[19]  K. Mullis,et al.  Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. , 1988, Science.

[20]  M. Ko,et al.  The dose dependence of glucocorticoid‐inducible gene expression results from changes in the number of transcriptionally active templates. , 1990, The EMBO journal.

[21]  J. Eberwine,et al.  Amplified RNA synthesized from limited quantities of heterogeneous cDNA. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[22]  N. Iscove,et al.  Representative in Vitro cDNA Amplification From Individual Hemopoietic Cells and Colonies , 1990 .

[23]  R. Abramson,et al.  Detection of specific polymerase chain reaction product by utilizing the 5'----3' exonuclease activity of Thermus aquaticus DNA polymerase. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[24]  P. Walsh,et al.  Simultaneous Amplification and Detection of Specific DNA Sequences , 1992, Bio/Technology.

[25]  R. A. Ikeda,et al.  Initiation of transcription by T7 RNA polymerase as its natural promoters. , 1992, The Journal of biological chemistry.

[26]  J. Rossier,et al.  AMPA receptor subunits expressed by single purkinje cells , 1992, Neuron.

[27]  R. A. Ikeda The efficiency of promoter clearance distinguishes T7 class II and class III promoters. , 1992, The Journal of biological chemistry.

[28]  J. Eberwine,et al.  Analysis of gene expression in single live neurons. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Russell Higuchi,et al.  Kinetic PCR Analysis: Real-time Monitoring of DNA Amplification Reactions , 1993, Bio/Technology.

[30]  M. Groudine,et al.  Enhancers increase the probability but not the level of gene expression. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[31]  L. Neckers,et al.  Bovine serum albumin is a major oligonucleotide-binding protein found on the surface of cultured cells. , 1995, Antisense research and development.

[32]  Gerard Brady,et al.  Errata , 1897, Current Biology.

[33]  H. Steen,et al.  SYBR green I DNA staining increases the detection sensitivity of viruses by polymerase chain reaction. , 1995, Journal of virological methods.

[34]  M. McPherson,et al.  PCR 2 : a practical approach , 2016 .

[35]  L. Liotta,et al.  Laser Capture Microdissection , 1996, Science.

[36]  Paul Rabinow,et al.  Making PCR: A Story of Biotechnology , 1997 .

[37]  C. Kreader Relief of amplification inhibition in PCR with bovine serum albumin or T4 gene 32 protein , 1996, Applied and environmental microbiology.

[38]  Robert F. Bonner,et al.  Laser Capture Microdissection: Molecular Analysis of Tissue , 1997, Science.

[39]  I G Wilson,et al.  Inhibition and facilitation of nucleic acid amplification , 1997, Applied and environmental microbiology.

[40]  U J Balis,et al.  The LightCycler: a microvolume multisample fluorimeter with rapid temperature control. , 1997, BioTechniques.

[41]  A. Arkin,et al.  Stochastic mechanisms in gene expression. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[42]  Darrell P. Chandler,et al.  Reverse Transcriptase (RT) Inhibition of PCR at Low Concentrations of Template and Its Implications for Quantitative RT-PCR , 1998, Applied and Environmental Microbiology.

[43]  Georgia Lahr,et al.  Identification of expressed genes by laser-mediated manipulation of single cells , 1998, Nature Biotechnology.

[44]  L. Buck,et al.  Combinatorial Receptor Codes for Odors , 1999, Cell.

[45]  S. Quake,et al.  Monolithic microfabricated valves and pumps by multilayer soft lithography. , 2000, Science.

[46]  Thomas D. Schmittgen,et al.  Quantitative reverse transcription-polymerase chain reaction to study mRNA decay: comparison of endpoint and real-time methods. , 2000, Analytical biochemistry.

[47]  P Kainz,et al.  The PCR plateau phase - towards an understanding of its limitations. , 2000, Biochimica et biophysica acta.

[48]  P. Rådström,et al.  Effects of Amplification Facilitators on Diagnostic PCR in the Presence of Blood, Feces, and Meat , 2000, Journal of Clinical Microbiology.

[49]  Thomas D. Schmittgen,et al.  Real-Time Quantitative PCR , 2002 .

[50]  H. Höfler,et al.  Tissue microdissection techniques in quantitative genome and gene expression analyses , 2001, Histochemistry and Cell Biology.

[51]  A. Chenchik,et al.  Reverse transcriptase template switching: a SMART approach for full-length cDNA library construction. , 2001, BioTechniques.

[52]  Z. Modrušan,et al.  Optimized T7 amplification system for microarray analysis. , 2001, BioTechniques.

[53]  Thomas D. Schmittgen,et al.  Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. , 2001, Methods.

[54]  A. Moorman,et al.  Sensitivity and accuracy of quantitative real-time polymerase chain reaction using SYBR green I depends on cDNA synthesis conditions. , 2002, Analytical biochemistry.

[55]  J. Irache,et al.  Albumin nanoparticles as carriers for a phosphodiester oligonucleotide. , 2002, International journal of pharmaceutics.

[56]  S A Bustin,et al.  Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. , 2002, Journal of molecular endocrinology.

[57]  M. Roederer,et al.  The history and future of the fluorescence activated cell sorter and flow cytometry: a view from Stanford. , 2002, Clinical chemistry.

[58]  B. Liss Improved quantitative real-time RT-PCR for expression profiling of individual cells. , 2002, Nucleic acids research.

[59]  Neil Winegarden,et al.  Representation is faithfully preserved in global cDNA amplified exponentially from sub-picogram quantities of mRNA , 2002, Nature Biotechnology.

[60]  J Wang,et al.  RNA amplification strategies for cDNA microarray experiments. , 2003, BioTechniques.

[61]  Aaron R Wheeler,et al.  Microfluidic device for single-cell analysis. , 2003, Analytical chemistry.

[62]  Julian R. E. Davis,et al.  Dynamic patterns of growth hormone gene transcription in individual living pituitary cells. , 2003, Molecular endocrinology.

[63]  M. Kubista,et al.  Properties of the reverse transcription reaction in mRNA quantification. , 2004, Clinical chemistry.

[64]  W. Koch Technology platforms for pharmacogenomic diagnostic assays , 2004, Nature Reviews Drug Discovery.

[65]  Vincent Studer,et al.  A nanoliter-scale nucleic acid processor with parallel architecture , 2004, Nature Biotechnology.

[66]  R. Zare,et al.  Chemical cytometry on a picoliter-scale integrated microfluidic chip. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[67]  P. Moll,et al.  Optimized RNA amplification using T7-RNA-polymerase based in vitro transcription. , 2004, Analytical biochemistry.

[68]  N. Melosh,et al.  Silicon chip-based patch-clamp electrodes integrated with PDMS microfluidics. , 2004, Biosensors & bioelectronics.

[69]  L. Ugozzoli,et al.  Four-color multiplex reverse transcription polymerase chain reaction--overcoming its limitations. , 2005, Analytical biochemistry.

[70]  F. J. Livesey,et al.  Comparative evaluation of linear and exponential amplification techniques for expression profiling at the single-cell level , 2006, Genome Biology.

[71]  R. Lasken,et al.  Genomic DNA Amplification from a Single Bacterium , 2005, Applied and Environmental Microbiology.

[72]  P. Rorsman,et al.  Gene expression profiling in single cells from the pancreatic islets of Langerhans reveals lognormal distribution of mRNA levels. , 2005, Genome research.

[73]  E. Petricoin,et al.  Laser Capture Microdissection , 1996, Science.

[74]  R. Singer,et al.  Transcriptional Pulsing of a Developmental Gene , 2006, Current Biology.

[75]  David Bryder,et al.  Transcription factor profiling in individual hematopoietic progenitors by digital RT-PCR , 2006, Proceedings of the National Academy of Sciences.

[76]  G. Whitesides The origins and the future of microfluidics , 2006, Nature.

[77]  Stephen R. Quake,et al.  Microfluidic Digital PCR Enables Multigene Analysis of Individual Environmental Bacteria , 2006, Science.

[78]  D. Tranchina,et al.  Stochastic mRNA Synthesis in Mammalian Cells , 2006, PLoS biology.

[79]  G. Church,et al.  Sequencing genomes from single cells by polymerase cloning , 2006, Nature Biotechnology.

[80]  Tania Nolan,et al.  SPUD: a quantitative PCR assay for the detection of inhibitors in nucleic acid preparations. , 2006, Analytical biochemistry.

[81]  J. Audet,et al.  Current techniques for single-cell lysis , 2008, Journal of The Royal Society Interface.

[82]  A. Oudenaarden,et al.  Nature, Nurture, or Chance: Stochastic Gene Expression and Its Consequences , 2008, Cell.

[83]  Martin Hemberg,et al.  Quantification of mRNA in single cells and modelling of RT-qPCR induced noise , 2008, BMC Molecular Biology.

[84]  L. Esserman,et al.  A comparison of RNA amplification techniques at sub-nanogram input concentration , 2009, BMC Genomics.

[85]  Catalin C. Barbacioru,et al.  mRNA-Seq whole-transcriptome analysis of a single cell , 2009, Nature Methods.

[86]  R. Mathies,et al.  Integrated microfluidic systems for high-performance genetic analysis. , 2009, Trends in biotechnology.

[87]  Haim H. Bau,et al.  Cell electrophysiology with carbon nanopipettes. , 2009, ACS nano.

[88]  V. Beneš,et al.  The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. , 2009, Clinical chemistry.

[89]  Mikael Huss,et al.  Resolution of cell fate decisions revealed by single-cell gene expression analysis from zygote to blastocyst. , 2010, Developmental cell.

[90]  K. Hodne,et al.  Single-cell qPCR on dispersed primary pituitary cells -an optimized protocol , 2010, BMC Molecular Biology.

[91]  S. Linnarsson,et al.  Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. , 2011, Genome research.

[92]  J. Troge,et al.  Tumour evolution inferred by single-cell sequencing , 2011, Nature.

[93]  Yury Gogotsi,et al.  Multifunctional carbon-nanotube cellular endoscopes. , 2011, Nature nanotechnology.

[94]  R. Sandberg,et al.  Full-Length mRNA-Seq from single cell levels of RNA and individual circulating tumor cells , 2012, Nature Biotechnology.

[95]  G. Alexandre,et al.  Bovine serum albumin further enhances the effects of organic solvents on increased yield of polymerase chain reaction of GC-rich templates , 2012, BMC Research Notes.

[96]  Helene Andersson Svahn,et al.  Droplet microfluidics--a tool for single-cell analysis. , 2012, Angewandte Chemie.

[97]  T. Hashimshony,et al.  CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification. , 2012, Cell reports.

[98]  Marius Wernig,et al.  Comprehensive qPCR profiling of gene expression in single neuronal cells , 2011, Nature Protocols.

[99]  S. Herminghaus,et al.  Droplet based microfluidics , 2012, Reports on progress in physics. Physical Society.

[100]  H. Ueda,et al.  Erratum to: Quartz-Seq: a highly reproducible and sensitive single-cell RNA sequencing method, reveals non-genetic gene-expression heterogeneity , 2017, Genome Biology.

[101]  X. Xie,et al.  Genome-Wide Detection of Single-Nucleotide and Copy-Number Variations of a Single Human Cell , 2012, Science.

[102]  E. Shapiro,et al.  Single-cell sequencing-based technologies will revolutionize whole-organism science , 2013, Nature Reviews Genetics.

[103]  Oleg V Podgorny,et al.  Live cell isolation by laser microdissection with gravity transfer , 2013, Journal of biomedical optics.

[104]  M. Kubista,et al.  Direct Cell Lysis for Single-Cell Gene Expression Profiling , 2013, Front. Oncol..

[105]  M. Pop,et al.  Sequence assembly demystified , 2013, Nature Reviews Genetics.

[106]  Gioele La Manno,et al.  Quantitative single-cell RNA-seq with unique molecular identifiers , 2013, Nature Methods.

[107]  Peter Van Loo,et al.  Single cell analysis of cancer genomes. , 2014, Current opinion in genetics & development.

[108]  Anders Ståhlberg,et al.  The workflow of single-cell expression profiling using quantitative real-time PCR , 2014, Expert review of molecular diagnostics.

[109]  N. Neff,et al.  Quantitative assessment of single-cell RNA-sequencing methods , 2013, Nature Methods.

[110]  Guo-Cheng Yuan,et al.  Single-Cell Analysis in Cancer , 2015 .

[111]  S. Quake,et al.  A survey of human brain transcriptome diversity at the single cell level , 2015, Proceedings of the National Academy of Sciences.

[112]  Alexander van Oudenaarden,et al.  Spatially resolved transcriptomics and beyond , 2014, Nature Reviews Genetics.

[113]  S. Teichmann,et al.  Computational and analytical challenges in single-cell transcriptomics , 2015, Nature Reviews Genetics.

[114]  Fabian J Theis,et al.  Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells , 2015, Nature Biotechnology.

[115]  J. Marioni,et al.  High-throughput spatial mapping of single-cell RNA-seq data to tissue of origin , 2015, Nature Biotechnology.

[116]  Jeffrey W. Smith,et al.  Stochastic Gene Expression in a Single Cell , 2022 .