Outer power transformations of hierarchical Archimedean copulas: Construction, sampling and estimation

A large number of commonly used parametric Archimedean copula (AC) families are restricted to a single parameter, connected to a concordance measure such as Kendall's tau. This often leads to poor statistical fits, particularly in the joint tails, and can sometimes even limit the ability to model concordance or tail dependence mathematically. This work suggests outer power (OP) transformations of Archimedean generators to overcome these limitations. The copulas generated by OP-transformed generators can, for example, allow one to capture both a given concordance measure and a tail dependence coefficient simultaneously. For exchangeable OP-transformed ACs, a formula for computing tail dependence coefficients is obtained, as well as two feasible OP AC estimators are proposed and their properties studied by simulation. For hierarchical extensions of OP-transformed ACs, a new construction principle, efficient sampling and parameter estimation are addressed. By simulation, convergence rate and standard errors of the proposed estimator are studied. Excellent tail fitting capabilities of OP-transformed hierarchical AC models are demonstrated in a risk management application. The results show that the OP transformation is able to improve the statistical fit of exchangeable ACs, particularly of those that cannot capture upper tail dependence or strong concordance, as well as the statistical fit of hierarchical ACs, especially in terms of tail dependence and higher dimensions. Given how comparably simple it is to include OP transformations into existing exchangeable and hierarchical AC models, this transformation provides an attractive trade-off between computational effort and statistical improvement.

[1]  Paul H. Kupiec,et al.  Techniques for Verifying the Accuracy of Risk Measurement Models , 1995 .

[2]  Claudia Czado,et al.  Pair-Copula Constructions of Multivariate Copulas , 2010 .

[3]  Ken Seng Tan,et al.  Structure and Estimation of Lévy Subordinated Hierarchical Archimedean Copulas (LSHAC): Theory and Empirical Tests , 2015 .

[4]  C. Genest,et al.  Everything You Always Wanted to Know about Copula Modeling but Were Afraid to Ask , 2007 .

[5]  Dorota Kurowicka,et al.  Dependence Modeling: Vine Copula Handbook , 2010 .

[6]  S. Bernstein,et al.  Sur les fonctions absolument monotones , 1929 .

[7]  Christian Genest,et al.  Multivariate Archimax copulas , 2014, J. Multivar. Anal..

[8]  M. Rezapour On the construction of nested Archimedean copulas for d-monotone generators , 2015 .

[9]  C. Genest,et al.  Statistical Inference Procedures for Bivariate Archimedean Copulas , 1993 .

[10]  Hélène Cossette,et al.  Composite likelihood estimation method for hierarchical Archimedean copulas defined with multivariate compound distributions , 2019, J. Multivar. Anal..

[11]  Marius Hofert,et al.  Efficiently sampling nested Archimedean copulas , 2011, Comput. Stat. Data Anal..

[12]  Martin Holena,et al.  Hierarchical Archimedean Copulas for MATLAB and Octave: The HACopula Toolbox , 2020, Journal of Statistical Software.

[13]  C. Genest,et al.  Bivariate Distributions with Given Extreme Value Attractor , 2000 .

[14]  Martin Holena,et al.  An approach to structure determination and estimation of hierarchical Archimedean Copulas and its application to Bayesian classification , 2016, Journal of Intelligent Information Systems.

[15]  R. Nelsen An Introduction to Copulas , 1998 .

[16]  Didier Rullière,et al.  On tail dependence coefficients of transformed multivariate Archimedean copulas , 2016, Fuzzy Sets Syst..

[17]  P. Embrechts,et al.  Quantitative Risk Management: Concepts, Techniques, and Tools , 2005 .

[18]  Yarema Okhrin,et al.  On the structure and estimation of hierarchical Archimedean copulas , 2013 .

[19]  Yarema Okhrin,et al.  Properties of hierarchical Archimedean copulas , 2013 .

[20]  Victor DeMiguel,et al.  Optimal Versus Naive Diversification: How Inefficient is the 1/N Portfolio Strategy? , 2009 .

[21]  Paul Ressel Homogeneous distributions - And a spectral representation of classical mean values and stable tail dependence functions , 2013, J. Multivar. Anal..

[22]  Alexander J. McNeil,et al.  Multivariate Archimedean copulas, $d$-monotone functions and $\ell_1$-norm symmetric distributions , 2009, 0908.3750.

[23]  Vladimir Batagelj,et al.  Note on ultrametric hierarchical clustering algorithms , 1981 .

[24]  H. Joe Dependence Modeling with Copulas , 2014 .

[25]  M. Hofert,et al.  Kendall’s tau and agglomerative clustering for structure determination of hierarchical Archimedean copulas , 2017 .

[26]  Nathan Uyttendaele On the estimation of nested Archimedean copulas: a theoretical and an experimental comparison , 2018, Comput. Stat..

[27]  Chong-Yu Xu,et al.  Hydrological uncertainty processor based on a copula function , 2018 .

[28]  E. Makalic,et al.  An efficient algorithm for sampling from sin k  (x) for generating random correlation matrices , 2018, Commun. Stat. Simul. Comput..

[29]  Martin Holeňa,et al.  On structure, family and parameter estimation of hierarchical Archimedean copulas , 2016, 1611.09225.

[30]  M. Hofert Sampling Nested Archimedean Copulas: with Applications to CDO Pricing , 2010 .

[31]  Johan Segers,et al.  Nonparametric estimation of the tree structure of a nested Archimedean copula , 2013, Comput. Stat. Data Anal..

[32]  B. Rémillard,et al.  Goodness-of-fit tests for copulas: A review and a power study , 2006 .

[33]  H. Joe Multivariate models and dependence concepts , 1998 .

[34]  Jean-David Fermanian,et al.  Goodness-of-fit tests for copulas , 2005 .

[35]  C. Kimberling A probabilistic interpretation of complete monotonicity , 1974 .

[36]  Marius Hofert,et al.  A stochastic representation and sampling algorithm for nested Archimedean copulas , 2012 .

[37]  I. Olkin,et al.  Families of Multivariate Distributions , 1988 .

[38]  M. Hofert,et al.  CDO pricing with nested Archimedean copulas , 2011 .

[39]  Rafael Schmidt,et al.  Non‐parametric Estimation of Tail Dependence , 2006 .

[40]  A. McNeil Sampling nested Archimedean copulas , 2008 .

[41]  A. McNeil,et al.  Archimedean Copulas in High Dimensions: Estimators and Numerical Challenges Motivated by Financial Applications , 2012 .