A sufficient convergence condition for the quantized iterative water-filling algorithm

In this paper we derive a sufficient condition under which the iterative water-filling (IWF) algorithm with quantized noise-plus-interference levels is guaranteed to converge and has a unique Nash equilibrium. This condition is shown to approach the corresponding condition for standard IWF when the quantization resolution or the transmission powers are sufficiently high.

[1]  Wei Yu,et al.  Distributed multiuser power control for digital subscriber lines , 2002, IEEE J. Sel. Areas Commun..

[2]  Sergio Barbarossa,et al.  Optimal Linear Precoding Strategies for Wideband Noncooperative Systems Based on Game Theory—Part I: Nash Equilibria , 2007, IEEE Transactions on Signal Processing.

[3]  F. Facchinei,et al.  Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .

[4]  Shuguang Cui,et al.  Price-Based Spectrum Management in Cognitive Radio Networks , 2007, IEEE Journal of Selected Topics in Signal Processing.

[5]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[6]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[7]  S. Barbarossa,et al.  Asynchronous Iterative Waterfilling for Gaussian Frequency-Selective Interference Channels: A Unified Framework , 2007, 2007 Information Theory and Applications Workshop.

[8]  Halim Yanikomeroglu,et al.  Convergence of Iterative Water-Filling With Quantized Feedback: A Sufficient Condition , 2012, IEEE Transactions on Signal Processing.

[9]  Zhi-Quan Luo,et al.  Analysis of Iterative Waterfilling Algorithm for Multiuser Power Control in Digital Subscriber Lines , 2006, EURASIP J. Adv. Signal Process..

[10]  Ramy H. Gohary,et al.  Robust IWFA for Open-Spectrum Communications , 2009, IEEE Transactions on Signal Processing.

[11]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[12]  Yu. A. Al’pin,et al.  The generalized monotonicity property of the Perron root , 2007 .

[13]  Zhi-Quan Luo,et al.  Ieee Transactions on Signal Processing a Generalized Iterative Water-filling Algorithm for Distributed Power Control in the Presence of a Jammer , 2022 .

[14]  Mingyi Hong,et al.  Averaged Iterative Water-Filling Algorithm: Robustness and Convergence , 2011, IEEE Transactions on Signal Processing.