Optimum experimental design for identification of distributed parameter systems

A method to design optimal experiments for parameter estimation in distributed systems is given. The design variables considered are the boundary perturbation and the spatial location of measurement sensors. The design criterion used is the determinant of Fisher's information matrix. It is shown that suitable choice of these variables leads to improved parameter accuracy. Two examples are used to illustrate this method. The first example is concerned with sensor location for estimating the velocity of propagation and the damping coefficient of a vibrating string. The second example is concerned with the estimation of the thermal diffusivity and radiation constant for a heat diffusion process. It is also shown that the design philosophy can be applied to a wide class of systems described by partial differential equations.

[1]  G. C. Danielson,et al.  THERMAL DIFFUSIVITY OF METALS AT HIGH TEMPERATURES , 1954 .

[2]  R. E. Goodson,et al.  Identification of Systems Described by Partial Differential Equations , 1966 .

[3]  J. M. Nightingale,et al.  Concerning optimal filtering theory of linear distributed-parameter systems , 1968 .

[4]  J. Seinfeld Identification of parameters in partial differential equations , 1969 .

[5]  R. Goodson,et al.  A definition and some results for distributed system observability , 1970 .

[6]  Karl Johan Åström,et al.  BOOK REVIEW SYSTEM IDENTIFICATION , 1994, Econometric Theory.

[7]  M. Wozny,et al.  Distributed Parameter Identification Using the Method of Characteristics , 1971 .

[8]  Leslie N. Balaam,et al.  Bibliography on experiment and treatment design, pre-1968 , 1972 .

[9]  M. Wozny,et al.  On parameter identification for distributed systems using Galerkin's criterion , 1973 .

[10]  J. Seinfeld,et al.  Observability and optimal measurement location in linear distributed parameter systems , 1973 .

[11]  Raman K. Mehra,et al.  Optimal input signals for parameter estimation in dynamic systems--Survey and new results , 1974 .

[12]  R. C. St. John,et al.  D-Optimality for Regression Designs: A Review , 1975 .

[13]  R Mead,et al.  A review of response surface methodology from a biometric viewpoint. , 1975, Biometrics.

[14]  Carlos S. Kubrusly,et al.  Distributed parameter system indentification A survey , 1977 .

[15]  Lennart Ljung,et al.  Identification of processes in closed loop - identifiability and accuracy aspects , 1977, Autom..