Creation of Synthetic Data with Conditional Generative Adversarial Networks
暂无分享,去创建一个
José Cristóbal Riquelme Santos | Isabel A. Nepomuceno-Chamorro | Belén Vega-Márquez | Cristina Rubio-Escudero | Belén Vega-Márquez | Cristina Rubio-Escudero
[1] Fei Wang,et al. Differentially Private Generative Adversarial Network , 2018, ArXiv.
[2] Christa Boer,et al. Correlation Coefficients: Appropriate Use and Interpretation , 2018, Anesthesia and analgesia.
[3] Tianqi Chen,et al. XGBoost: A Scalable Tree Boosting System , 2016, KDD.
[4] Jimeng Sun,et al. Generating Multi-label Discrete Electronic Health Records using Generative Adversarial Networks , 2017, ArXiv.
[5] Hae-Young Kim. Statistical notes for clinical researchers: covariance and correlation , 2018, Restorative dentistry & endodontics.
[6] Simon Osindero,et al. Conditional Generative Adversarial Nets , 2014, ArXiv.
[7] Christoph Meinel,et al. Multi-Task Generative Adversarial Network for Handling Imbalanced Clinical Data , 2018, ArXiv.
[8] Boi Faltings,et al. Generating Differentially Private Datasets Using GANs , 2018, ArXiv.
[9] Casey S. Greene,et al. Privacy-preserving generative deep neural networks support clinical data sharing , 2017 .
[10] Gaël Varoquaux,et al. Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..
[11] Pavlos Protopapas,et al. T-CGAN: Conditional Generative Adversarial Network for Data Augmentation in Noisy Time Series with Irregular Sampling , 2018, ArXiv.
[12] Philip Sedgwick,et al. Pearson’s correlation coefficient , 2012, BMJ : British Medical Journal.
[13] Mihaela van der Schaar,et al. PATE-GAN: Generating Synthetic Data with Differential Privacy Guarantees , 2018, ICLR.