The Criteria for Beneficial Disorder in Thermoelectric Solid Solutions

Forming solid solutions has long been considered an effective approach for good thermoelectrics because the lattice thermal conductivities are lower than those of the constituent compounds due to phonon scattering from disordered atoms. However, this effect could also be compensated by a reduction in carrier mobility due to electron scattering from the same disorder. Using a detailed study of n‐type (PbTe)1–x (PbSe)x solid solution (0 ≤ x ≤ 1) as a function of composition, temperature, and doping level, quantitative modeling of transport properties reveals the important parameters characterizing these effects. Based on this analysis, a general criterion for the improvement of zT due to atomic disorder in solid solutions is derived and can be applied to several thermoelectric solid solutions, allowing a convenient prediction of whether better thermoelectric performance could be achieved in a given solid solution. Alloying is shown to be most effective at low temperatures and in materials that are unfavorable for thermoelectrics in their unalloyed forms: high lattice thermal conductivity (stiff materials with low Grüneisen parameters) and high deformation potential.

[1]  G. J. Snyder,et al.  Dopants effect on the band structure of PbTe thermoelectric material , 2012 .

[2]  G. J. Snyder,et al.  High Thermoelectric Figure of Merit in PbTe Alloys Demonstrated in PbTe–CdTe , 2012 .

[3]  Heng Wang,et al.  Weak electron–phonon coupling contributing to high thermoelectric performance in n-type PbSe , 2012, Proceedings of the National Academy of Sciences.

[4]  M. Kanatzidis,et al.  Thermoelectrics with earth abundant elements: high performance p-type PbS nanostructured with SrS and CaS. , 2012, Journal of the American Chemical Society.

[5]  Wei Liu,et al.  Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg2Si(1-x)Sn(x) solid solutions. , 2012, Physical review letters.

[6]  E. Case,et al.  Room-Temperature Mechanical Properties and Slow Crack Growth Behavior of Mg2Si Thermoelectric Materials , 2012, Journal of Electronic Materials.

[7]  Joseph P. Heremans,et al.  Resonant levels in bulk thermoelectric semiconductors , 2012 .

[8]  M. Dresselhaus,et al.  Perspectives on thermoelectrics: from fundamentals to device applications , 2012 .

[9]  G. J. Snyder,et al.  Stabilizing the Optimal Carrier Concentration for High Thermoelectric Efficiency , 2011, Advanced materials.

[10]  Heng Wang,et al.  Lead telluride alloy thermoelectrics , 2011 .

[11]  K. Esfarjani,et al.  Enhancement of thermoelectric figure-of-merit by resonant states of aluminium doping in lead selenide , 2011 .

[12]  G. J. Snyder,et al.  Phonon engineering through crystal chemistry , 2011 .

[13]  Joseph P. Heremans,et al.  Combining alloy scattering of phonons and resonant electronic levels to reach a high thermoelectric figure of merit in PbTeSe and PbTeS alloys , 2011 .

[14]  Ctirad Uher,et al.  High performance Na-doped PbTe-PbS thermoelectric materials: electronic density of states modification and shape-controlled nanostructures. , 2011, Journal of the American Chemical Society.

[15]  G. J. Snyder,et al.  Combination of large nanostructures and complex band structure for high performance thermoelectric lead telluride , 2011 .

[16]  Eric S. Toberer,et al.  Mechanochemical synthesis and thermoelectric properties of high quality magnesium silicide , 2011 .

[17]  G. J. Snyder,et al.  A high temperature apparatus for measurement of the Seebeck coefficient. , 2011, The Review of scientific instruments.

[18]  M. Kanatzidis,et al.  Thermoelectrics from abundant chemical elements: high-performance nanostructured PbSe-PbS. , 2011, Journal of the American Chemical Society.

[19]  G. J. Snyder,et al.  Reevaluation of PbTe1−xIx as high performance n-type thermoelectric material , 2011 .

[20]  G. J. Snyder,et al.  High thermoelectric figure of merit in heavy hole dominated PbTe , 2011 .

[21]  Heng Wang,et al.  Convergence of electronic bands for high performance bulk thermoelectrics , 2011, Nature.

[22]  G. J. Snyder,et al.  Heavily Doped p‐Type PbSe with High Thermoelectric Performance: An Alternative for PbTe , 2011, Advanced materials.

[23]  David J. Singh,et al.  Giant anharmonic phonon scattering in PbTe. , 2011, Nature materials.

[24]  Gerhard Klimeck,et al.  Atomistic approach to alloy scattering in Si1−xGex , 2011, 1102.4805.

[25]  G. J. Snyder,et al.  Rapid consolidation of powdered materials by induction hot pressing. , 2011, The Review of scientific instruments.

[26]  G. J. Snyder,et al.  Reduction of thermal conductivity in PbTe:Tl by alloying with TlSbTe 2 , 2011 .

[27]  W. S. Liu,et al.  Experimental studies on anisotropic thermoelectric properties and structures of n-type Bi2Te2.7Se0.3. , 2010, Nano letters.

[28]  David J. Singh,et al.  High-temperature thermoelectric performance of heavily doped PbSe , 2010 .

[29]  Edward J. Timm,et al.  Room temperature Young's modulus, shear modulus, Poisson's ratio and hardness of PbTe–PbS thermoelectric materials , 2010 .

[30]  David J. Singh Doping-dependent thermopower of PbTe from Boltzmann transport calculations , 2010 .

[31]  M. Kanatzidis,et al.  Exploring resonance levels and nanostructuring in the PbTe-CdTe system and enhancement of the thermoelectric figure of merit. , 2010, Journal of the American Chemical Society.

[32]  Eric S. Toberer,et al.  High Thermoelectric Performance in PbTe Due to Large Nanoscale Ag2Te Precipitates and La Doping , 2010 .

[33]  M. Kanatzidis Nanostructured Thermoelectrics: The New Paradigm?† , 2010 .

[34]  Eric S. Toberer,et al.  Electronic structure and transport in thermoelectric compounds AZn2Sb2 (A = Sr, Ca, Yb, Eu). , 2010, Dalton transactions.

[35]  Michael A. McGuire,et al.  Phonon density of states and heat capacity of La 3 − x Te 4 , 2009 .

[36]  M. Kanatzidis,et al.  New and old concepts in thermoelectric materials. , 2009, Angewandte Chemie.

[37]  M. Dresselhaus,et al.  Modeling study of thermoelectric SiGe nanocomposites , 2009 .

[38]  Gang Chen,et al.  Bulk nanostructured thermoelectric materials: current research and future prospects , 2009 .

[39]  Xinbing Zhao,et al.  High-performance half-Heusler thermoelectric materials Hf1−x ZrxNiSn1−ySby prepared by levitation melting and spark plasma sintering , 2009 .

[40]  P. Konstantinov,et al.  Multicomponent n-(Bi,Sb)2(Te,Se,S)3 solid solutions with different atomic substitutions in the Bi and Te sublattices , 2008 .

[41]  Hohyun Lee,et al.  Enhanced thermoelectric figure of merit in nanostructured n-type silicon germanium bulk alloy , 2008 .

[42]  Hohyun Lee,et al.  Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys. , 2008, Nano letters.

[43]  L. Bell Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems , 2008, Science.

[44]  Xinbing Zhao,et al.  High figures of merit and natural nanostructures in Mg2Si0.4Sn0.6 based thermoelectric materials , 2008 .

[45]  G. J. Snyder,et al.  Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States , 2008, Science.

[46]  David J. Singh,et al.  Ab initio phonon dispersions for PbTe , 2008, 0806.2727.

[47]  G. J. Snyder,et al.  Complex thermoelectric materials. , 2008, Nature materials.

[48]  V. Zemskov,et al.  Thermoelectric materials based on Sb2Te3-Bi2Te3 solid solutions with optimal performance in the range 100–400 K , 2007 .

[49]  Enrico Bellotti,et al.  Alloy scattering in AlGaN and InGaN : A numerical study , 2007 .

[50]  Keith S. Stowe The thermal properties of solids , 2007 .

[51]  Jonathan D'Angelo,et al.  Nanostructures versus solid solutions: low lattice thermal conductivity and enhanced thermoelectric figure of merit in Pb9.6Sb0.2Te10-xSex bulk materials. , 2006, Journal of the American Chemical Society.

[52]  M. Fang,et al.  Effect of point defects on the thermal transport properties of (LaxGd1- x)2Zr2O7 : Experiment and theoretical model , 2006 .

[53]  M. Kanatzidis,et al.  Electronic transport properties of PbTe and AgPbmSbTe2+m systems , 2006 .

[54]  E. A. Gurieva,et al.  Highly effective Mg 2 Si 1 − x Sn x thermoelectrics , 2006 .

[55]  G. Meisner,et al.  Strain field fluctuation effects on lattice thermal conductivity of ZrNiSn-based thermoelectric compounds , 2004 .

[56]  K. West,et al.  Direct observation of alloy scattering of two-dimensional electrons in AlxGa1−xAs , 2003 .

[57]  C. Bhandari,et al.  High-temperature thermoelectric performance of Si-Ge alloys , 2003 .

[58]  M. Mehl,et al.  Electronic structure calculations of lead chalcogenides PbS, PbSe, PbTe , 2002 .

[59]  S. Movchan Photosensitive heterostructures CdTe-PbTe prepared by hot-wall technique , 1999 .

[60]  Donald T. Morelli,et al.  Transport properties of pure and doped M NiSn ( M =Zr, Hf) , 1999 .

[61]  C. Goldmann,et al.  Efficient dopants for ZrNiSn-based thermoelectric materials , 1999 .

[62]  C. Uher,et al.  Structure and Lattice Thermal Conductivity of Fractionally Filled Skutterudites: Solid Solutions of Fully Filled and Unfilled End Members , 1998 .

[63]  A. Zunger,et al.  Electronic and structural anomalies in lead chalcogenides , 1997 .

[64]  D. Zayachuk The dominant mechanisms of charge-carrier scattering in lead telluride , 1997 .

[65]  D. Chattopadhyay Electron mobility in Cd0.8Zn0.2Te , 1994 .

[66]  B. M. Askerov,et al.  Electron Transport Phenomena in Semiconductors , 1994 .

[67]  H. Dumont,et al.  Photo-assisted growth of ZnTe by metalorganic chemical vapour deposition , 1993 .

[68]  P. Batson,et al.  Conduction band structure of GexSi1−x using spatially resolved electron energy‐loss scattering , 1991 .

[69]  Renate Egan,et al.  Electron mobility in InAs1−xSbx and the effect of alloy scattering , 1991 .

[70]  V. Chin Calculations of the electron mobility of InAsxP1−x , 1991 .

[71]  Cronin B. Vining,et al.  A model for the high‐temperature transport properties of heavily doped n‐type silicon‐germanium alloys , 1991 .

[72]  D. M. Rowe,et al.  The effect of phonon‐grain boundary scattering on the lattice thermal conductivity and thermoelectric conversion efficiency of heavily doped fine‐grained, hot‐pressed silicon germanium alloy , 1981 .

[73]  D. M. Rowe,et al.  Phonon scattering at grain boundaries in heavily doped fine-grained silicon–germanium alloys , 1981, Nature.

[74]  J. W. Harrison,et al.  Alloy scattering and high field transport in ternary and quaternary III–V semiconductors , 1978 .

[75]  J. W. Harrison,et al.  Alloy scattering in ternary III-V compounds , 1976 .

[76]  T. H. Glisson,et al.  Velocity‐field relationship of InAs‐InP alloys including the effects of alloy scattering , 1976 .

[77]  R. Blachnik,et al.  Thermodynamische Eigenschaften von IV–VI-Verbindungen: Bleichalkogenide / Thermodynamic Properties of IV–VI-Compounds: Leadchalcogenides , 1974 .

[78]  M. Glicksman,et al.  Disorder scattering in solid solutions of III–V semiconducting compounds , 1973 .

[79]  B. A. Efimova,et al.  Scattering of Current Carriers and Transport Phenomena in Lead Chalcogenides II. Experiment , 1971 .

[80]  Yu. I. Ravich,et al.  Scattering of Current Carriers and Transport Phenomena in Lead Chalcogenides , 1971 .

[81]  L. Stil’bans,et al.  Semiconducting Lead Chalcogenides , 1970 .

[82]  Peter Lawætz,et al.  Low-Field Mobility and Galvanomagnetic Properties of Holes in Germanium with Phonon Scattering , 1968 .

[83]  L. R. Weisberg,et al.  ELECTRON MOBILITY IN GaAs1−xPx ALLOYS , 1965 .

[84]  E. F. Steigmeier,et al.  Scattering of Phonons by Electrons in Germanium-Silicon Alloys , 1964 .

[85]  B. Abeles Lattice Thermal Conductivity of Disordered Semiconductor Alloys at High Temperatures , 1963 .

[86]  Joseph Callaway,et al.  Effect of Point Imperfections on Lattice Thermal Conductivity , 1960 .

[87]  Paul G. Klemens,et al.  Thermal Resistance due to Point Defects at High Temperatures , 1960 .

[88]  R. Stratton,et al.  The Thermoelectric Figure of Merit and its Relation to Thermoelectric Generators , 1959 .

[89]  W. W. Scanlon,et al.  Recent advances in the optical and electronic properties of PbS, PbSe, PbTe and their alloys , 1959 .

[90]  P. Klemens The Scattering of Low-Frequency Lattice Waves by Static Imperfections , 1955 .

[91]  J. Bardeen,et al.  Deformation Potentials and Mobilities in Non-Polar Crystals , 1950 .

[92]  L. Nordheim Zur Elektronentheorie der Metalle. II , 1931 .