Attitude Data Fusion Using a Modified Rodrigues Parametrization

Data fusion in the presence of unknown correlations is an expanding area of research as many space related applications move toward smaller, distributed systems. While nontrivial by nature, the problem is further compounded when one considers fusion of attitude estimates where singularities and constraints must be accounted for. Prior work in this area has considered fusion when the attitude is parameterized using the four-dimensional quaternion. While the quaternion has many advantages, its norm constraint provides some added difficulty to the fusion process which may render it unsuitable for onboard spacecraft attitude fusion systems. This work provides an alternative means for data fusion by parameterizing the attitude using the three-dimensional modified Rodrigues parameters. Because they represent a minimally parameterized set, modified Rodrigues parameters fall victim to a singularity which must be considered during fusion. Two algorithms, a global and a local approach are developed within the Covariance Intersection framework for fusing modified Rodrigues parameters while avoiding the singularity. Simulation results validate the approach and show a computational advantage over previous quaternion based algorithms.

[1]  William D. Banas,et al.  Decentralized Relative Attitude Estimation for Three-Spacecraft Formation Flying Applications , 2009 .

[2]  W. Gander Least squares with a quadratic constraint , 1980 .

[3]  John L. Crassidis,et al.  Decentralized Attitude Estimation Using a Quaternion Covariance Intersection Approach , 2009 .

[4]  S. R. Marandi,et al.  A preferred coordinate system and the associated orientation representation in attitude dynamics , 1987 .

[5]  John L. Crassidis,et al.  Sliding Mode Control Using Modified Rodrigues Parameters , 1996 .

[6]  J. Junkins,et al.  Optimal Estimation of Dynamic Systems , 2004 .

[7]  W. Niehsen,et al.  Information fusion based on fast covariance intersection filtering , 2002, Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997).

[8]  T. A. W. Dwyer,et al.  Gibbs vector kinematics and inverse dynamics for decoupled spacecraft attitude maneuvers , 1986 .

[9]  S. Altmann,et al.  Hamilton, Rodrigues, and the Quaternion Scandal , 1989 .

[10]  Jeffrey K. Uhlmann,et al.  A non-divergent estimation algorithm in the presence of unknown correlations , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[11]  E. J. Lefferts,et al.  Kalman Filtering for Spacecraft Attitude Estimation , 1982 .

[12]  F. Markley Attitude Error Representations for Kalman Filtering , 2003 .

[13]  J. Junkins,et al.  Stereographic Orientation Parameters for Attitude Dynamics: A Generalization of the Rodrigues Parameters , 1996 .

[14]  G. Golub,et al.  Quadratically constrained least squares and quadratic problems , 1991 .

[15]  D. Zwillinger,et al.  Standard Mathematical Tables and Formulae , 1997, The Mathematical Gazette.

[16]  G. Wahba A Least Squares Estimate of Satellite Attitude , 1965 .

[17]  Thomas Freud. Wiener,et al.  Theoretical analysis of gimballess inertial reference equipment using delta-modulated instruments , 1962 .

[18]  F. Markley,et al.  Unscented Filtering for Spacecraft Attitude Estimation , 2003 .

[19]  W. Gander,et al.  A Constrained Eigenvalue Problem , 1989 .

[20]  John L. Crassidis,et al.  In-Space Spacecraft Alignment Calibration Using the Unscented Filter , 2003 .

[21]  J. Crassidis,et al.  Particle Filtering for Sequential Spacecraft Attitude Estimation , 2004 .

[22]  Jeffrey K. Uhlmann,et al.  General data fusion for estimates with unknown cross covariances , 1996, Defense, Security, and Sensing.

[23]  M. Shuster A survey of attitude representation , 1993 .

[24]  F. Markley,et al.  Attitude Estimation Using Modified Rodrigues Parameters , 1996 .