Surface-optical phonon assisted transitions in quantum dots

The Frohlich interaction between electrons and surface-optical phonons is studied by using the dielectric continuum model. First, the eigenfrequencies of the surface phonons are calculated. A result for the normalized displacement of the phonon is obtained and a more accurate electron-surface phonon Frohlich interaction Hamiltonian is calculated. The surface-optical-phonon-assisted scattering rate of an electron in free-standing GaN quantum dots is calculated with natural linewidth broadening. Finally, illustrative examples of surface-optical-phonon-assisted scattering rates are calculated to clarify the potential importance of SO-phonon-assisted transitions in potential applications of quantum dots.

[1]  Michael A. Stroscio,et al.  Electron‐optical‐phonon interaction in binary/ternary heterostructures , 1990 .

[2]  Scattering rates due to electron-phonon interaction in CdS1-xSex quantum dots , 2000 .

[3]  Jianbin Xu,et al.  Self-assembly and photoluminescence of CdS-mercaptoacetic clusters with internal structures , 2000 .

[4]  Klein,et al.  Size dependence of electron-phonon coupling in semiconductor nanospheres: The case of CdSe. , 1990, Physical review. B, Condensed matter.

[5]  I. Vurgaftman,et al.  Effect of spectral broadening and electron‐hole scattering on carrier relaxation in GaAs quantum dots , 1994 .

[6]  J. J. Licari,et al.  Electron-phonon interaction in a dielectric slab: Effect of the electronic polarizability , 1977 .

[7]  Y. Nakata,et al.  QUANTUM-DOT LASERS FABRICATED WITH SELF-ASSEMBLED MICROCRYSTALS , 1998 .

[8]  M. Kisin,et al.  Interband tunneling depopulation in type-II InAs//GaSb cascade laser heterostructure , 2001 .

[9]  Nikolai N. Ledentsov,et al.  InGaAs-GaAs quantum-dot lasers , 1997 .

[10]  M. Stroscio Interface‐phonon‐assisted transitions in quantum‐well lasers , 1996 .

[11]  K. Akai,et al.  POLARON IN A SPHERICAL QUANTUM DOT EMBEDDED IN A NONPOLAR MATRIX , 1998 .

[12]  Mitra Dutta,et al.  Phonons in Nanostructures , 2001 .

[13]  S. M. Komirenko,et al.  Phonons in III–V nitrides: Confined phonons and interface phonons , 2001 .

[14]  P. Bhattacharya,et al.  Dynamic characteristics of high-speed In0.4Ga0.6As/GaAs self-organized quantum dot lasers at room temperature , 2002 .

[15]  Roca,et al.  Polar optical vibrational modes in quantum dots. , 1994, Physical review. B, Condensed matter.

[16]  Stroscio,et al.  Interface phonons in spherical GaAs/AlxGa1-xAs quantum dots. , 1995, Physical Review B (Condensed Matter).

[17]  Marini,et al.  Exciton-phonon interaction in CdSe and CuCl polar semiconductor nanospheres. , 1994, Physical review. B, Condensed matter.

[18]  F. Capasso,et al.  Nonequilibrium optical phonon generation by steady-state electron transport in quantum-cascade lasers , 2002 .

[19]  Sanjay Krishna,et al.  Intersubband gain and stimulated emission in long-wavelength (/spl lambda/=13 /spl mu/m) intersubband In(Ga)As-GaAs quantum-dot electroluminescent devices , 2001 .

[20]  Serge Luryi,et al.  Tunneling-injection quantum-dot laser: ultrahigh temperature stability , 2001 .

[21]  A. Forchel,et al.  High-temperature operating 1.3-μm quantum-dot lasers for telecommunication applications , 2001, IEEE Photonics Technology Letters.

[22]  R. Bechmann,et al.  Numerical data and functional relationships in science and technology , 1969 .

[23]  M. Kisin,et al.  Phonon enhanced inverse population in asymmetric double quantum wells , 1999 .

[24]  Mori,et al.  Electron-optical-phonon interaction in single and double heterostructures. , 1989, Physical review. B, Condensed matter.