Learning to Be a Good Tour-Guide Robot
暂无分享,去创建一个
Thanks to the numerous attempts that are being made to develop autonomous robots, increasingly intelligent and cognitive skills are allowed. This paper proposes an automatic presentation generator for a robot guide, which is considered one more cognitive skill. The presentations are made up of groups of paragraphs. The selection of the best paragraphs is based on a semantic understanding of the characteristics of the paragraphs, on the restrictions defined for the presentation and by the quality criteria appropriate for a public presentation. This work is part of the ROBONAUTA project of the Intelligent Control Research Group at the Universidad Politecnica de Madrid to create "awareness" in a robot guide. The software developed in the project has been verified on the tour-guide robot Urbano. The most important aspect of this proposal is that the design uses learning as the means to optimize the quality of the presentations. To achieve this goal, the system has to perform the optimized decision making, in different phases. The modeling of the quality index of the presentation is made using fuzzy logic and it represents the beliefs of the robot about what is good, bad, or indifferent about a presentation. This fuzzy system is used to select the most appropriate group of paragraphs for a presentation. The beliefs of the robot continue to evolving in order to coincide with the opinions of the public. It uses a genetic algorithm for the evolution of the rules. With this tool, the tour guide-robot shows the presentation, which satisfies the objectives and restrictions, and automatically it identifies the best paragraphs in order to find the most suitable set of contents for every public profile.