Analysis of Nonlinear Poro-Elastic and Poro-Visco-Elastic Models

[1]  Tirthankar Bhattacharyya,et al.  Topics in Functional Analysis and Applications , 2015 .

[2]  Yanzhao Cao,et al.  Quasilinear poroelasticity: Analysis and hybrid finite element approximation , 2015 .

[3]  P. Causin,et al.  A poroelastic model for the perfusion of the lamina cribrosa in the optic nerve head. , 2014, Mathematical biosciences.

[4]  Yanzhao Cao,et al.  Steady flow in a deformable porous medium , 2014 .

[5]  Yanzhao Cao,et al.  ANALYSIS AND NUMERICAL APPROXIMATIONS OF EQUATIONS OF NONLINEAR POROELASTICITY , 2013 .

[6]  Larry A Kramer,et al.  Optic disc edema, globe flattening, choroidal folds, and hyperopic shifts observed in astronauts after long-duration space flight. , 2011, Ophthalmology.

[7]  D. Stewart Dynamics with Inequalities: Impacts and Hard Constraints , 2011 .

[8]  I. E. Vignon-Clementel,et al.  A poroelastic model valid in large strains with applications to perfusion in cardiac modeling , 2010 .

[9]  S. Owczarek A Galerkin Method for Biot Consolidation Model , 2010 .

[10]  Robert Langer,et al.  Perspectives and Challenges in Tissue Engineering and Regenerative Medicine , 2009, Advanced materials.

[11]  Luigi Preziosi,et al.  Multiphase modelling of tumour growth and extracellular matrix interaction: mathematical tools and applications , 2009, Journal of mathematical biology.

[12]  Raytcho D. Lazarov,et al.  Unified Hybridization of Discontinuous Galerkin, Mixed, and Continuous Galerkin Methods for Second Order Elliptic Problems , 2009, SIAM J. Numer. Anal..

[13]  A. Quarteroni,et al.  Numerical Approximation of Partial Differential Equations , 2008 .

[14]  M. Wheeler,et al.  A coupling of mixed and discontinuous Galerkin finite-element methods for poroelasticity , 2008 .

[15]  Suncica Canic,et al.  Modeling Viscoelastic Behavior of Arterial Walls and Their Interaction with Pulsatile Blood Flow , 2006, SIAM J. Appl. Math..

[16]  Greg Lemon,et al.  Mathematical modelling of engineered tissue growth using a multiphase porous flow mixture theory , 2006, Journal of mathematical biology.

[17]  Olaf Kolditz,et al.  Finite element analysis of poro-elastic consolidation in porous media: Standard and mixed approaches , 2006 .

[18]  F. Gaspar,et al.  A finite difference analysis of Biot's consolidation model , 2003 .

[19]  Ning Su,et al.  Partially saturated flow in a poroelastic medium , 2001 .

[20]  R. Showalter Diffusion in Poro-Elastic Media , 2000 .

[21]  S. Klisch Internally Constrained Mixtures of Elastic Continua , 1999 .

[22]  R. Showalter Monotone operators in Banach space and nonlinear partial differential equations , 1996 .

[23]  M. Farhloul A mixed finite element method for the Stokes equations , 1994 .

[24]  M. Fortin,et al.  A new mixed finite element for the Stokes and elasticity problems , 1993 .

[25]  R S Reneman,et al.  Porous medium finite element model of the beating left ventricle. , 1992, The American journal of physiology.

[26]  W M Lai,et al.  A triphasic theory for the swelling and deformation behaviors of articular cartilage. , 1991, Journal of biomechanical engineering.

[27]  P. Cheng,et al.  Thermal dispersion in a porous medium , 1990 .

[28]  V. Mow,et al.  Biphasic creep and stress relaxation of articular cartilage in compression? Theory and experiments. , 1980, Journal of biomechanical engineering.

[29]  L. Herrmann Elasticity Equations for Incompressible and Nearly Incompressible Materials by a Variational Theorem , 1965 .

[30]  M. Biot General Theory of Three‐Dimensional Consolidation , 1941 .

[31]  Sophia Mã ¶ ller,et al.  Biomechanics — Mechanical properties of living tissue , 1982 .

[32]  Long Chen FINITE ELEMENT METHOD , 2013 .

[33]  V. Nistor,et al.  Well-posedness and Regularity for the Elasticity Equation with Mixed Boundary Conditions on Polyhedral Domains and Domains with Cracks , 2010 .

[34]  Mary F. Wheeler,et al.  Overcoming the problem of locking in linear elasticity and poroelasticity: an heuristic approach , 2009 .

[35]  Paola Causin,et al.  A Discontinuous Petrov-Galerkin Method with Lagrangian Multipliers for Second Order Elliptic Problems , 2005, SIAM J. Numer. Anal..

[36]  D. L. Sean McElwain,et al.  A Mixture Theory for the Genesis of Residual Stresses in Growing Tissues I: A General Formulation , 2005, SIAM J. Appl. Math..

[37]  Bernardo Cockburn,et al.  A Characterization of Hybridized Mixed Methods for Second Order Elliptic Problems , 2004, SIAM J. Numer. Anal..

[38]  Ajh Arjan Frijns,et al.  A four-component mixture theory applied to cartilaginous tissues : numerical modelling and experiments , 2000 .

[39]  S. Cowin Bone poroelasticity. , 1999, Journal of biomechanics.

[40]  B. Schrefler,et al.  The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media , 1998 .

[41]  Giuseppe Savaré,et al.  Regularity and perturbation results for mixed second order elliptic problems , 1997 .

[42]  Serge Nicaise,et al.  About the Lamé system in a polygonal or a polyhedral domain and a coupled problem between the Lamé system and the plate equation. I : regularity of the solutions , 1992 .

[43]  Jean E. Roberts,et al.  Mixed and hybrid methods , 1991 .

[44]  Jean E. Roberts,et al.  Mixed and hybrid finite element methods , 1987 .

[45]  D. Arnold,et al.  Mixed and nonconforming finite element methods : implementation, postprocessing and error estimates , 1985 .

[46]  A. Ženíšek,et al.  The existence and uniqueness theorem in Biot's consolidation theory , 1984 .

[47]  B. Schulze,et al.  Mixed Boundary Value Problems for Lamé's System in Three Dimensions , 1984 .