External control of the scattering properties of a single optical nanoantenna

We present a mechanism to control the scattering properties of individual optical nanoantennas by applying an external electric field. We find that by electrically tuning an anisotropic load medium the scattered intensity becomes voltage-dependent. We also demonstrate that the scattering diagram of the antenna can be externally adjusted. This on-demand command opens up the possibility to tune an antenna without changing its geometrical parameters.

[1]  Aurélien Bruyant,et al.  Gain, detuning, and radiation patterns of nanoparticle optical antennas , 2008 .

[2]  Hongxing Xu,et al.  Surface-plasmon-enhanced optical forces in silver nanoaggregates. , 2002, Physical review letters.

[3]  Thomas A. Milligan,et al.  Modern Antenna Design: Milligan/Modern Antenna Design , 2005 .

[4]  Chih-Yu Chao,et al.  Electrically controlled surface plasmon resonance frequency of gold nanorods , 2006 .

[5]  A. Bouhelier,et al.  Far-field imaging of the electromagnetic local density of optical states. , 2008, Optics letters.

[6]  V. Fréedericksz,et al.  Forces causing the orientation of an anisotropic liquid , 1933 .

[7]  D. Bergman,et al.  Self-similar chain of metal nanospheres as efficient nanolens , 2003, InternationalQuantum Electronics Conference, 2004. (IQEC)..

[8]  Thomas A. Klar,et al.  Electrically controlled light scattering with single metal nanoparticles , 2002 .

[9]  Javier Aizpurua,et al.  Controlling the near-field oscillations of loaded plasmonic nanoantennas , 2009 .

[10]  Fernando D Stefani,et al.  Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna. , 2008, Optics express.

[11]  T. Milligan Modern Antenna Design , 1985 .

[12]  P. Alsing,et al.  Electric field tuning of plasmonic response of nanodot array in liquid crystal matrix. , 2005, Nano letters.

[13]  Pascal Royer,et al.  Tuning of an optical dimer nanoantenna by electrically controlling its load impedance. , 2009, Nano letters.

[14]  Holger F. Hofmann,et al.  Design parameters for a nano-optical Yagi–Uda antenna , 2007, cond-mat/0703595.

[15]  A. Bouhelier,et al.  Near-field second-harmonic generation induced by local field enhancement. , 2003, Physical review letters.

[16]  Andrea Alù,et al.  Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas. , 2007, Physical review letters.

[17]  Romain Quidant,et al.  Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing. , 2009, ACS nano.

[18]  K. Saraswat,et al.  Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna , 2008 .

[19]  C. Vena,et al.  Light depolarization effects during the Fréedericksz transition in nematic liquid crystals. , 2007, Optics express.

[20]  Wayne Dickson,et al.  Electrically switchable nonreciprocal transmission of plasmonic nanorods with liquid crystal , 2007 .

[21]  D. Pohl,et al.  Single quantum dot coupled to a scanning optical antenna: a tunable superemitter. , 2005, Physical review letters.