The Snap-Back Pivoting Method for Symmetric Banded Indefinite Matrices
暂无分享,去创建一个
[1] James Hardy Wilkinson,et al. Rounding errors in algebraic processes , 1964, IFIP Congress.
[2] G. Stewart. The economical storage of plane rotations , 1976 .
[3] Mei Han An,et al. accuracy and stability of numerical algorithms , 1991 .
[4] Ian A. Cavers. A Hybrid Tridiagonalization Algorithm for Symmetric Sparse Matrices , 1994 .
[5] N. Higham. How Accurate is Gaussian Elimination , 1989 .
[6] Iain S. Duff,et al. MA27 -- A set of Fortran subroutines for solving sparse symmetric sets of linear equations , 1982 .
[7] John G. Lewis,et al. Accurate Symmetric Indefinite Linear Equation Solvers , 1999, SIAM J. Matrix Anal. Appl..
[8] J. Bunch,et al. Some stable methods for calculating inertia and solving symmetric linear systems , 1977 .
[9] Christian H. Bischof,et al. A framework for symmetric band reduction , 2000, TOMS.
[10] H. Rutishauser. On jacobi rotation patterns , 1963 .
[11] H. D. Huskey,et al. NOTES ON THE SOLUTION OF ALGEBRAIC LINEAR SIMULTANEOUS EQUATIONS , 1948 .
[12] Iain S. Duff,et al. MA47, a Fortran code for direct solution of indefinite sparse symmetric linear systems , 1995 .
[13] H. Schwarz. Tridiagonalization of a symetric band matrix , 1968 .
[14] Iain S. Duff,et al. The Rutherford-Boeing sparse matrix collection , 1997 .
[15] Mark T. Jones,et al. Bunch-Kaufman factorization for real symmetric indefinite banded matrices , 1993 .
[16] G. Miller. On the Solution of a System of Linear Equations , 1910 .
[17] J. O. Aasen. On the reduction of a symmetric matrix to tridiagonal form , 1971 .
[18] James Hardy Wilkinson,et al. Error Analysis of Direct Methods of Matrix Inversion , 1961, JACM.
[19] J. C. Gower,et al. Accuracy and stability , 2004 .
[20] John K. Reid,et al. The Multifrontal Solution of Indefinite Sparse Symmetric Linear , 1983, TOMS.
[21] M. SIAMJ.. STABILITY OF THE DIAGONAL PIVOTING METHOD WITH PARTIAL PIVOTING , 1995 .
[22] Bruno Lang,et al. A Parallel Algorithm for Reducing Symmetric Banded Matrices to Tridiagonal Form , 1993, SIAM J. Sci. Comput..
[23] K. Murata,et al. A New Method for the Tridiagonalization of the Symmetric Band Matrix , 1975 .