Herschel observations of deuterated water towards Sgr B2(M)

Observations of HDO are an important complement for studies of water, because they give strong constraints on the formation processes – grain surfaces versus energetic process in the gas phase, e.g. in shocks. The HIFI observations of multiple transitions of HDO in Sgr B2(M) presented here allow the determination of the HDO abundance throughout the envelope, which has not been possible before with ground-based observations only. The abundance structure has been modeled with the spherical Monte Carlo radiative transfer code RATRAN, which also takes radiative pumping by continuum emission from dust into account. The modeling reveals that the abundance of HDO rises steeply with temperature from a low abundance (2.5 × 10 −11 ) in the outer envelope at temperatures below 100 K through a medium abundance (1.5 × 10 −9 ) in the inner envelope/outer core at temperatures between 100 and 200 K, and finally a high abundance ( 3.5 × 10 −9 ) at temperatures above 200 K in the hot

[1]  G. Chattopadhyay,et al.  Reversal of infall in SgrB2(M) revealed by Herschel/HIFI observations of HCN lines at THz frequencies , 2010, 1007.5131.

[2]  S. Ott,et al.  Herschel Space Observatory - An ESA facility for far-infrared and submillimetre astronomy , 2010, 1005.5331.

[3]  K. Menten,et al.  Erratum: Detection of amino acetonitrile in Sgr B2(N) , 2008, 0801.3219.

[4]  P. Bernath,et al.  Odin spectral line observations of Sgr A and Sgr B2 at submm wavelengths and in the 118-GHz band , 2006 .

[5]  J. Goicoechea,et al.  Warm Water Vapor around Sagittarius B2 , 2006 .

[6]  J. Goicoechea,et al.  Water Vapor around Sgr B2 , 2006, astro-ph/0601336.

[7]  C. Kramer,et al.  The Herschel-Heterodyne Instrument for the Far-Infrared (HIFI) , 2005, Infrared and Millimeter Waves, Conference Digest of the 2004 Joint 29th International Conference on 2004 and 12th International Conference on Terahertz Electronics, 2004..

[8]  J. Black,et al.  An atomic and molecular database for analysis of submillimetre line observations , 2004, astro-ph/0411110.

[9]  N. Rodríguez-Fernández,et al.  The Far-Infrared Spectrum of the Sagittarius B2 Region: Extended Molecular Absorption, Photodissociation, and Photoionization , 2003, astro-ph/0309353.

[10]  E. Bergin,et al.  Submillimeter Wave Astronomy Satellite Mapping Observations of Water Vapor around Sagittarius B2 , 2003, astro-ph/0303044.

[11]  M. Gerin,et al.  The line-of-sight distribution of water in the SgrB2 complex , 2003, astro-ph/0303004.

[12]  J. Goicoechea,et al.  The ISO LWS high-resolution spectral survey towards Sagittarius B2 , 2003, astro-ph/0702725.

[13]  Peter Schilke,et al.  Reconstructing reality: Strategies for sideband deconvolution , 2002 .

[14]  C. Tremonti,et al.  Deuterium in the Galactic Centre as a result of recent infall of low-metallicity gas , 2000, Nature.

[15]  Alexander G. G. M. Tielens,et al.  An Inventory of Interstellar Ices toward the Embedded Protostar W33A , 2000 .

[16]  T. Millar,et al.  A Three-Position Spectral Line Survey of Sagittarius B2 between 218 and 263 GHz. I. The Observational Data , 1998 .

[17]  S. Green Collisional Excitation of Interstellar Molecules: Deuterated Water, HDO , 1989 .

[18]  D. Lis,et al.  CO isotope studies and mass of the Sagittarius B2 molecular cloud , 1989 .

[19]  H. Müller,et al.  Submillimeter, millimeter, and microwave spectral line catalog. , 1985, Applied optics.

[20]  Robert Mann,et al.  Astronomical Data Analysis Software and Systems XXI , 2012 .

[21]  P. Roelfsema,et al.  Astronomical Data Analysis Software and Systems I , 1992 .