A fast algorithm for image segmentation based on fuzzy region competition

[1]  Xavier Bresson,et al.  Geometric Applications of the Split Bregman Method: Segmentation and Surface Reconstruction , 2010, J. Sci. Comput..

[2]  Hanqing Zhao,et al.  A fast algorithm for the total variation model of image denoising , 2010, Adv. Comput. Math..

[3]  R. Jia,et al.  Applied and Computational Harmonic Analysis Convergence Analysis of the Bregman Method for the Variational Model of Image Denoising , 2022 .

[4]  Tom Goldstein,et al.  The Split Bregman Method for L1-Regularized Problems , 2009, SIAM J. Imaging Sci..

[5]  Chunming Li,et al.  Implicit Active Contours Driven by Local Binary Fitting Energy , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[6]  Xavier Bresson,et al.  Fast Global Minimization of the Active Contour/Snake Model , 2007, Journal of Mathematical Imaging and Vision.

[7]  Benoit Mory,et al.  Fuzzy Region Competition: A Convex Two-Phase Segmentation Framework , 2007, SSVM.

[8]  Rachid Deriche,et al.  Geodesic Active Regions: A New Framework to Deal with Frame Partition Problems in Computer Vision , 2002, J. Vis. Commun. Image Represent..

[9]  L. Vese,et al.  A level set algorithm for minimizing the Mumford-Shah functional in image processing , 2001, Proceedings IEEE Workshop on Variational and Level Set Methods in Computer Vision.

[10]  L. Vese,et al.  Active contours without edges , 2001, IEEE Trans. Image Process..

[11]  P. Lions,et al.  Image recovery via total variation minimization and related problems , 1997 .

[12]  T. Chan,et al.  A Variational Level Set Approach to Multiphase Motion , 1996 .

[13]  Anthony J. Yezzi,et al.  Gradient flows and geometric active contour models , 1995, Proceedings of IEEE International Conference on Computer Vision.

[14]  R. Kimmel,et al.  Geodesic Active Contours , 1995, Proceedings of IEEE International Conference on Computer Vision.

[15]  V. Caselles,et al.  A geometric model for active contours in image processing , 1993 .

[16]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[17]  D. Mumford,et al.  Optimal approximations by piecewise smooth functions and associated variational problems , 1989 .

[18]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[19]  Jian-Feng Cai,et al.  Split Bregman Methods and Frame Based Image Restoration , 2009, Multiscale Model. Simul..

[20]  Mila Nikolova,et al.  Algorithms for Finding Global Minimizers of Image Segmentation and Denoising Models , 2006, SIAM J. Appl. Math..

[21]  Wotao Yin,et al.  An Iterative Regularization Method for Total Variation-Based Image Restoration , 2005, Multiscale Model. Simul..

[22]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[23]  ANTONIN CHAMBOLLE,et al.  An Algorithm for Total Variation Minimization and Applications , 2004, Journal of Mathematical Imaging and Vision.

[24]  Ron Kimmel,et al.  Fast Edge Integration , 2003 .

[25]  John W. Fisher,et al.  Submitted to Ieee Transactions on Image Processing a Nonparametric Statistical Method for Image Segmentation Using Information Theory and Curve Evolution , 2022 .