The properties of new, high temperature optical materials based on dye-doped Ultradel 9000D polyimides are presented. Ultradel 9000D is a soluble, pre-imidized, fluorinated polymer with properties optimized for integrated optical applications. When thermally or photochemically cross-linked, it has a Tg approaching 400$DEGC and retains excellent optical transparency as measured by both waveguide loss spectroscopy (WLS) and photothermal deflection spectroscopy (PDS). The agreement between WLS and PDS data indicates that losses in polyimides are due to absorption, not scattering. Two thermally stable, donor-acceptor oxazole-based dyes were designed, synthesized, and doped into the polyimide at concentrations up to 25 percent by weight. The Tg of the doped polymers decreased from the neat polymer, but remained above 300$DEGC. The effects of doping on the dielectric constant, refractive index, and coefficient of thermal expansion of the polyimide are presented.