Cuckoo Search Algorithm for Model Parameter Identification

In this paper, the metaheuristics algorithm Cuckoo Search (CS), is adapted and applied for a model parameter identification of an E. coli fed-batch cultivation process. The dynamics of bacteria growth and substrate (glucose) utilization is described by a system of ordinary nonlinear differential equations. Using real experimental data set from an E. coli MC4110 fed-batch cultivation process a parameter optimization is performed. The simulation results indicate that the applied algorithm is effective and efficient. As a result, a model with high degree of accuracy is obtained applying the CS. The simulation results and comparison with genetic algorithm and ant colony optimization algorithm confirm the effectiveness of the applied CS algorithm in solving a cultivation model parameter identification problem.

[1]  Pauline Ong,et al.  Adaptive Cuckoo Search Algorithm for Unconstrained Optimization , 2014, TheScientificWorldJournal.

[2]  Ali R. Yildiz,et al.  Cuckoo search algorithm for the selection of optimal machining parameters in milling operations , 2012, The International Journal of Advanced Manufacturing Technology.

[3]  Olympia Roeva,et al.  Hybrid Bat Algorithm for Parameter Identification of an E. Coli Cultivation Process Model , 2013 .

[4]  Mohamed Abdel-Baset,et al.  Cuckoo Search and Genetic Algorithm Hybrid Schemes for Optimization Problems , 2016 .

[5]  Xin-She Yang,et al.  A New Metaheuristic Bat-Inspired Algorithm , 2010, NICSO.

[6]  Aboul Ella Hassanien,et al.  A Survey of Metaheuristics Methods for Bioinformatics Applications , 2016, Applications of Intelligent Optimization in Biology and Medicine.

[7]  El-Ghazali Talbi,et al.  Metaheuristics - From Design to Implementation , 2009 .

[8]  Xin-She Yang,et al.  Multiobjective cuckoo search for design optimization , 2013, Comput. Oper. Res..

[9]  Dervis Karaboga,et al.  AN IDEA BASED ON HONEY BEE SWARM FOR NUMERICAL OPTIMIZATION , 2005 .

[10]  Thang Trung Nguyen,et al.  Modified cuckoo search algorithm for short-term hydrothermal scheduling , 2015 .

[11]  Olympia Roeva,et al.  A Genetic Algorithms Based Approach for Identification of Escherichia coli Fed-batch Fermentation , 2004 .

[12]  Xin-She Yang,et al.  Bio-Inspired Computation and Applications in Image Processing , 2016 .

[13]  Olympia Roeva,et al.  Population Size Influence on the Genetic and Ant Algorithms Performance in Case of Cultivation Process Modeling , 2013, WCO@FedCSIS.

[14]  Francisco J. Asturias,et al.  Complete Structural Model of Escherichia coli RNA Polymerase from a Hybrid Approach , 2010, PLoS biology.

[15]  Hanadi S. Rifai,et al.  Modeling Escherichia Coli and Its Sources in an Urban Bayou with Hydrologic Simulation Program—FORTRAN , 2011 .

[16]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[17]  Olympia Roeva,et al.  Genetic Algorithm Tuning of PID Controller in Smith Predictor for Glucose Concentration Control , 2011 .

[18]  Lili Jiang,et al.  Quantitative Modeling of Escherichia coli Chemotactic Motion in Environments Varying in Space and Time , 2010, PLoS Comput. Biol..

[19]  O. V. Demin,et al.  EI of the Phosphotransferase System of Escherichia coli: Mathematical Modeling Approach to Analysis of Its Kinetic Properties , 2011, Journal of biophysics.

[20]  Kouame Kan Benjamin,et al.  Genetic Algorithms Using for a Batch Fermentation Process Identification , 2008 .

[21]  Haruna Chiroma,et al.  Nature Inspired Meta-heuristic Algorithms for Deep Learning: Recent Progress and Novel Perspective , 2019, CVC.

[22]  Olympia Roeva,et al.  Optimization of E. coli Cultivation Model Parameters Using Firefly Algorithm , 2012 .

[23]  Xin-She Yang,et al.  Cuckoo Search via Lévy flights , 2009, 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC).