Algebraic splitting methods for the steady incompressible Navier Stokes equations at moderate Reynolds numbers

Abstract The unsteady incompressible Navier–Stokes equations in primitive variables are often numerically solved by segregating the computation of velocity and pressure, according to either functional analysis arguments following the pioneering work of A.J. Chorin and R. Temam (STD, Split-Then-Discretize paradigm) or linear algebra arguments based on the inexact block factorization of the discretized problem (DTS, Discretize-Then-Split paradigm). The presence of the time derivative allows for the calibration of an appropriate approximation of the pseudo-differential operator of the pressure problem and excellent results in terms of both accuracy and efficiency have been obtained as witnessed by the abundant literature. The extension of the same segregated approach to the steady Navier–Stokes equations is unclear, unless a pseudo-time advancing formulation is undertaken. In this paper we present a methodology for a segregated computation of the primitive variables in a genuinely steady formulation, so to avoid iterations to get to the steady limit. The approach is largely inspired by the algebraic factorization of the unsteady problem (DTS approach), yet we detail specific settings required by the absence of the velocity time-derivative. The basic idea relies on the introduction of some parameters in a modified Picard linearization. We discuss stability bounds and the convergence of the segregated method to the unsplit solution. Several numerical results on different test cases confirm the efficiency of the procedure.

[1]  Alessandro Veneziani A Note on the Consistency and Stability Properties of Yosida Fractional Step Schemes for the Unsteady Stokes Equations , 2009, SIAM J. Numer. Anal..

[2]  O. Karakashian On a Galerkin--Lagrange Multiplier Method for the Stationary Navier--Stokes Equations , 1982 .

[3]  R. Temam Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (II) , 1969 .

[4]  L. Rebholz,et al.  On reducing the splitting error in Yosida methods for the Navier–Stokes equations with grad-div stabilization , 2015 .

[5]  R. Rannacher,et al.  Benchmark Computations of Laminar Flow Around a Cylinder , 1996 .

[6]  J. B. Perot,et al.  An analysis of the fractional step method , 1993 .

[7]  A. Quarteroni,et al.  Numerical Approximation of Partial Differential Equations , 2008 .

[8]  Jean-Luc Guermond,et al.  Calculation of Incompressible Viscous Flows by an Unconditionally Stable Projection FEM , 1997 .

[9]  Jean-Luc Guermond,et al.  On the approximation of the unsteady Navier–Stokes equations by finite element projection methods , 1998, Numerische Mathematik.

[10]  F. Saleri,et al.  A fast preconditioner for the incompressible Navier Stokes Equations , 2004 .

[11]  Alessandro Veneziani,et al.  Pressure Correction Algebraic Splitting Methods for the Incompressible Navier-Stokes Equations , 2005, SIAM J. Numer. Anal..

[12]  Alfio Quarteroni,et al.  Analysis of the Yosida Method for the Incompressible Navier-Stokes Equations , 1999 .

[13]  Simona Perotto,et al.  Coupled Model and Grid Adaptivity in Hierarchical Reduction of Elliptic Problems , 2014, J. Sci. Comput..

[14]  Paola Gervasio,et al.  Algebraic fractional-step schemes with spectral methods for the incompressible Navier-Stokes equations , 2006, J. Comput. Phys..

[15]  Stefan Turek,et al.  Efficient Solvers for Incompressible Flow Problems - An Algorithmic and Computational Approach , 1999, Lecture Notes in Computational Science and Engineering.

[16]  W. Couzy,et al.  Spectral element discretization of the unsteady Navier-Stokes equations and its iterative solution on parallel computers , 1995 .

[17]  Jie Shen,et al.  A new class of truly consistent splitting schemes for incompressible flows , 2003 .

[18]  Liang Zhong,et al.  Numerical Simulation and Clinical Implications of Stenosis in Coronary Blood Flow , 2014, BioMed research international.

[19]  Jens Kristian Holmen,et al.  Algebraic splitting for incompressible Navier-Stokes equations , 2002 .

[20]  J. Dukowicz,et al.  Approximate factorization as a high order splitting for the implicit incompressible flow equations , 1992 .

[21]  C M Putman,et al.  Computational fluid dynamics modeling of intracranial aneurysms: effects of parent artery segmentation on intra-aneurysmal hemodynamics. , 2006, AJNR. American journal of neuroradiology.

[22]  Alessandro Veneziani,et al.  ALADINS: An ALgebraic splitting time ADaptive solver for the Incompressible Navier-Stokes equations , 2013, J. Comput. Phys..

[23]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[24]  A. Quarteroni,et al.  Factorization methods for the numerical approximation of Navier-Stokes equations , 2000 .

[25]  Gunar Matthies,et al.  International Journal for Numerical Methods in Fluids Higher-order Finite Element Discretizations in a Benchmark Problem for Incompressible Flows , 2022 .

[26]  C. Putman,et al.  Flow–area relationship in internal carotid and vertebral arteries , 2008, Physiological measurement.

[27]  M. Minion,et al.  Accurate projection methods for the incompressible Navier—Stokes equations , 2001 .

[28]  R. Rannacher On chorin's projection method for the incompressible navier-stokes equations , 1992 .

[29]  Jean-Luc Guermond,et al.  Un résultat de convergence d'ordre deux en temps pour l'approximation des équations de Navier-Stokes par une technique de projection incrémentale , 1999 .

[30]  A. Chorin A Numerical Method for Solving Incompressible Viscous Flow Problems , 1997 .

[31]  Rolf Rannacher,et al.  ARTIFICIAL BOUNDARIES AND FLUX AND PRESSURE CONDITIONS FOR THE INCOMPRESSIBLE NAVIER–STOKES EQUATIONS , 1996 .

[32]  A. Prohl Projection and quasi-compressibility methods for solving the incompressible navier-stokes equations , 1997 .

[33]  A. Veneziani Block factorized preconditioners for high‐order accurate in time approximation of the Navier‐Stokes equations , 2003 .

[34]  Howard C. Elman,et al.  Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics , 2014 .

[35]  Gene H. Golub,et al.  Numerical solution of saddle point problems , 2005, Acta Numerica.