The topology of the independence complex
暂无分享,去创建一个
[1] Xun Dong,et al. Alexander duality for projections of polytopes , 2002 .
[2] Louis J. Billera,et al. Decompositions of Partially Ordered Sets , 2000, Order.
[3] Irene Gassko. Stapled Sequences and Stapling Coverings of Natural Numbers , 1996, Electron. J. Comb..
[4] Louis J. Billera,et al. Shellability of Interval Orders , 1998 .
[5] Michelle L. Wachs,et al. Shellable nonpure complexes and posets. II , 1996 .
[6] R. Stanley. Combinatorics and commutative algebra , 1983 .
[7] Martin Farber,et al. Domination, independent domination, and duality in strongly chordal graphs , 1984, Discret. Appl. Math..
[8] Dmitry N. Kozlov,et al. Complexes of Directed Trees , 1999, J. Comb. Theory A.
[9] Gil Kalai,et al. Enumeration ofQ-acyclic simplicial complexes , 1983 .
[10] Svante Linusson. A Class of Lattices Whose Intervals are Spherical or Contractible , 1999, Eur. J. Comb..
[11] Michael E. Saks,et al. A topological approach to evasiveness , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).
[12] Jeff Kahn,et al. On lattices with M:obius function ±1, 0 , 1987, Discret. Comput. Geom..
[13] Victor Reiner,et al. Shifted simplicial complexes are Laplacian integral , 2002 .
[14] Christina M. Mynhardt,et al. Vertices contained in every minimum dominating set of a tree , 1999, J. Graph Theory.
[15] Lonnie Athens. ‘Domination’ , 2002 .
[16] Charalambos A. Charalambides,et al. Enumerative combinatorics , 2018, SIGA.
[17] Marshall M. Cohen. A Course in Simple-Homotopy Theory , 1973 .
[18] Michael E. Saks,et al. A topological approach to evasiveness , 1984, Comb..
[19] Richard Ehrenborg,et al. Playing Nim on a Simplicial Complex , 1996, Electron. J. Comb..
[20] M. Wachs. SHELLABLE NONPURE COMPLEXES AND POSETS , 1996 .