Inexact Newton's method solutions to the incompressible Navier-Stokes and energy equations using standard and matrix-free implementations

Fully implicit Ncwton's mcthod is coupled with conjugate gradient-likc itcrativc algorithms to form inexact Newton algorithms for solving the stcady, incompressible, Navicr-Stokes and encrgy equations in primitive variables. Finitc volumc diffcrcncing is employed using the power law convection-diffusion scheme on a uniform, but slaggcrcd mesh. The wcll known model problcm of natural convection in an enclosed cavity is solvcd. Thrce conjugatc gradient-like algorithms arc sclcctcd from a class of algorithms bascd upon thc Lanczos biorthogonalization proccdurc; namely, the conjugate gradicnts squarcd algorithm (CGS), the transpose-frce quasi-minimal rcsidual algorithm (QMRCGS), and a morc smoothly convcrgcnt version of thc bi-conjugate gradicnts algorithm (Bi-CGSTAB). A fourth algorithm is bascd upon the Arnoldi proccss, namcly the popular gcncralized minimal rcsidual algorithm (GMRES). The performance of a standard incxact Ncwton's mcthod implementation is comparcd with a matrix-frec implementation. Rcsults indicatc that thc performance of the matrix-free implemcntation is strongly dcpcndcnt upon grid size (numbcr of unknowns) and thc sclcction of the conjugatc gradient-like mcthod. GMRES was found to be supcrior to the Lanczos bascd algorithms within the contcxt of a matrix-frcc implcmcnlation. Among the Lanczos bascd algorithms, QMRCGS and Bi-CGSTAB wcrc bctter suitcd to thc matrix-frce implcmcntation than CGS bccausc of thcir smoothcr convcrgcncc behavior.

[1]  G. D. Davis Natural convection of air in a square cavity: A bench mark numerical solution , 1983 .

[2]  C. W. Gear,et al.  Iterative Solution of Linear Equations in ODE Codes , 1983 .

[3]  P. Brown,et al.  Matrix-free methods for stiff systems of ODE's , 1986 .

[4]  Dana A. Knoll,et al.  Fully coupled finite volume solutions of the incompressible Navier–Stokes and energy equations using an inexact Newton method , 1994 .

[5]  C. Lanczos Solution of Systems of Linear Equations by Minimized Iterations1 , 1952 .

[6]  R. Dembo,et al.  INEXACT NEWTON METHODS , 1982 .

[7]  Youcef Saad,et al.  A Basic Tool Kit for Sparse Matrix Computations , 1990 .

[8]  R. Fletcher Conjugate gradient methods for indefinite systems , 1976 .

[9]  T. Manteuffel,et al.  Necessary and Sufficient Conditions for the Existence of a Conjugate Gradient Method , 1984 .

[10]  O. Dahl,et al.  An ILU preconditioner with coupled node fill‐in for iterative solution of the mixed finite element formulation of the 2D and 3D Navier‐Stokes equations , 1992 .

[11]  David E. Keyes,et al.  Towards Polyalgorithmic Linear System Solvers for Nonlinear Elliptic Problems , 1994, SIAM J. Sci. Comput..

[12]  Anthony T. Chronopoulos,et al.  Implementation of Iterative Methods for Large Sparse Nonsymmetric Linear Systems On a Parallel Vector Machine , 1990, Int. J. High Perform. Comput. Appl..

[13]  Yousef Saad,et al.  Hybrid Krylov Methods for Nonlinear Systems of Equations , 1990, SIAM J. Sci. Comput..

[14]  G. Golub,et al.  Iterative solution of linear systems , 1991, Acta Numerica.

[15]  S. Patankar Numerical Heat Transfer and Fluid Flow , 2018, Lecture Notes in Mechanical Engineering.

[16]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[17]  Roland W. Freund,et al.  A Transpose-Free Quasi-Minimal Residual Algorithm for Non-Hermitian Linear Systems , 1993, SIAM J. Sci. Comput..

[18]  P. Gresho Some current CFD issues relevant to the incompressible Navier-Stokes equations , 1991 .

[19]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[20]  K. Jensen,et al.  A finite element solutionof three‐dimensional mixed convection gas flows in horizontal chnnels using preconditioned iterative metrix methods , 1992 .

[21]  T. Manteuffel,et al.  A taxonomy for conjugate gradient methods , 1990 .