Electrical Prism: a high quality factor filter for mm wave and terahertz frequencies

Energy direction is a function of frequency in low pass 2D lattice at frequencies close to the cut off. This property can be used to implement a high quality factor filter called electrical prism. Negative effective index was also shown to be achievable using the structure. Channeling of the signal and spatial filtering are the main reasons behind the filter having higher quality factor than component quality factor. This structure is specially interesting as it is easy to fabricate on conventional CMOS process.

[1]  Mau-Chung Frank Chang,et al.  Terahertz CMOS Frequency Generator Using Linear Superposition Technique , 2008, IEEE Journal of Solid-State Circuits.

[2]  Toshihiko Baba,et al.  Experimental demonstration of a wavelength demultiplexer based on negative-refractive photonic-crystal components , 2007 .

[3]  E Afshari,et al.  Nonlinear constructive interference in electrical lattices. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  Ali Hajimiri,et al.  Fully integrated CMOS power amplifier design using the distributed active-transformer architecture , 2002, IEEE J. Solid State Circuits.

[5]  Masaya Notomi,et al.  Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap , 2000 .

[6]  R.M. Weikle,et al.  Opening the terahertz window with integrated diode circuits , 2005, IEEE Journal of Solid-State Circuits.

[7]  H. Everitt,et al.  A Double Resonance Approach to Submillimeter/Terahertz Remote Sensing at Atmospheric Pressure , 2009, IEEE Journal of Quantum Electronics.

[8]  G. Eleftheriades,et al.  Planar negative refractive index media using periodically L-C loaded transmission lines , 2002 .

[9]  O. Momeni,et al.  Electrical Prism: A High Quality Factor Filter for Millimeter-Wave and Terahertz Frequencies , 2009, IEEE Transactions on Microwave Theory and Techniques.

[10]  David R. Smith,et al.  Negative refraction in indefinite media , 2004 .

[11]  Masaya Notomi,et al.  Superprism Phenomena in Photonic Crystals , 1998 .

[12]  L. Brillouin,et al.  Wave Propagation in Periodic Structures , 1946 .

[13]  C. Kittel Introduction to solid state physics , 1954 .

[14]  N. Llombart,et al.  Penetrating 3-D Imaging at 4- and 25-m Range Using a Submillimeter-Wave Radar , 2008, IEEE Transactions on Microwave Theory and Techniques.

[15]  P. Siegel Terahertz Technology , 2001 .

[16]  D. Smith,et al.  Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors. , 2002, Physical Review Letters.

[17]  Tatsuo Itoh,et al.  Electromagnetic metamaterials : transmission line theory and microwave applications : the engineering approach , 2005 .

[18]  I. Mehdi,et al.  A High-Resolution Imaging Radar at 580 GHz , 2008, IEEE Microwave and Wireless Components Letters.

[19]  G. Eleftheriades,et al.  Negative refraction and focusing in hyperbolic transmission-line periodic grids , 2005, IEEE Transactions on Microwave Theory and Techniques.

[20]  D. Sievenpiper,et al.  A steerable leaky-wave antenna using a tunable impedance ground plane , 2002, IEEE Antennas and Wireless Propagation Letters.

[21]  Masaya Notomi,et al.  Superprism phenomena in photonic crystals: toward microscale lightwave circuits , 1999 .

[22]  Ehsan Afshari,et al.  Ultrafast analog Fourier transform using 2-D LC lattice , 2008, IEEE Transactions on Circuits and Systems I: Regular Papers.

[23]  Charles A. Desoer,et al.  Basic Circuit Theory , 1969 .