Epigenetic regulation of CD133 and tumorigenicity of CD133+ ovarian cancer cells

[1]  N. Maitland,et al.  Prostate cancer stem cells: a new target for therapy. , 2008, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[2]  Curt Balch,et al.  Identification and characterization of ovarian cancer-initiating cells from primary human tumors. , 2008, Cancer research.

[3]  M. Zenke,et al.  Pluripotency Associated Genes Are Reactivated by Chromatin‐Modifying Agents in Neurosphere Cells , 2008, Stem cells.

[4]  M. Brittan,et al.  CD133: molecule of the moment , 2008, The Journal of pathology.

[5]  C. D. Salcido,et al.  Brca1 breast tumors contain distinct CD44+/CD24- and CD133+ cells with cancer stem cell characteristics , 2008, Breast Cancer Research.

[6]  Michael F Clarke,et al.  The biology of cancer stem cells. , 2007, Annual review of cell and developmental biology.

[7]  Curt Balch,et al.  Epigenetic "bivalently marked" process of cancer stem cell-driven tumorigenesis. , 2007, BioEssays : news and reviews in molecular, cellular and developmental biology.

[8]  S. Rutella,et al.  Expression of CD133-1 and CD133-2 in ovarian cancer , 2007, International Journal of Gynecologic Cancer.

[9]  A. Shiras,et al.  Spontaneous Transformation of Human Adult Nontumorigenic Stem Cells to Cancer Stem Cells Is Driven by Genomic Instability in a Human Model of Glioblastoma , 2007, Stem cells.

[10]  Alexander Brawanski,et al.  CD133(+) and CD133(-) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. , 2007, Cancer research.

[11]  I. Ng,et al.  Identification and characterization of tumorigenic liver cancer stem/progenitor cells. , 2007, Gastroenterology.

[12]  Jianren Gu,et al.  CD133 positive hepatocellular carcinoma cells possess high capacity for tumorigenicity , 2007, International journal of cancer.

[13]  J. Gilbert,et al.  Dissecting the locus heterogeneity of autism: significant linkage to chromosome 12q14 , 2007, Molecular Psychiatry.

[14]  J. Rhim,et al.  Identification of putative stem cell markers, CD133 and CXCR4, in hTERT-immortalized primary nonmalignant and malignant tumor-derived human prostate epithelial cell lines and in prostate cancer specimens. , 2007, Cancer research.

[15]  Caterina A M La Porta,et al.  Melanoma contains CD133 and ABCG2 positive cells with enhanced tumourigenic potential. , 2007, European journal of cancer.

[16]  Peter A. Jones,et al.  The Epigenomics of Cancer , 2007, Cell.

[17]  O. Ammerpohl,et al.  Detection of tumor stem cell markers in pancreatic carcinoma cell lines. , 2007, Hepatobiliary & pancreatic diseases international : HBPD INT.

[18]  P. Laird,et al.  Epigenetic stem cell signature in cancer , 2007, Nature Genetics.

[19]  Kelly M. McGarvey,et al.  A stem cell–like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing , 2007, Nature Genetics.

[20]  J. Dick,et al.  A human colon cancer cell capable of initiating tumour growth in immunodeficient mice , 2007, Nature.

[21]  L. Ricci-Vitiani,et al.  Identification and expansion of human colon-cancer-initiating cells , 2007, Nature.

[22]  O. McDonald,et al.  Concise Review: Epigenetic Mechanisms Contribute to Pluripotency and Cell Lineage Determination of Embryonic Stem Cells , 2007, Stem cells.

[23]  Dennis B. Troup,et al.  NCBI GEO: mining tens of millions of expression profiles—database and tools update , 2006, Nucleic Acids Res..

[24]  Michael F Clarke,et al.  Chromosome 5q deletion and epigenetic suppression of the gene encoding α-catenin (CTNNA1) in myeloid cell transformation , 2007, Nature Medicine.

[25]  K. Black,et al.  Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma , 2006, Molecular Cancer.

[26]  Jeffrey T. Chang,et al.  GATHER: a systems approach to interpreting genomic signatures , 2006, Bioinform..

[27]  Peter T Masiakos,et al.  Ovarian cancer side population defines cells with stem cell-like characteristics and Mullerian Inhibiting Substance responsiveness. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Yuri Kotliarov,et al.  Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. , 2006, Cancer cell.

[29]  Susan K. Murphy,et al.  High throughput detection of M6P/IGF2R intronic hypermethylation and LOH in ovarian cancer , 2006, Nucleic acids research.

[30]  N. Maitland,et al.  Prospective identification of tumorigenic prostate cancer stem cells. , 2005, Cancer research.

[31]  W. Huttner,et al.  Isolation of neural stem cells from the postnatal cerebellum , 2005, Nature Neuroscience.

[32]  M. West,et al.  Patterns of Gene Expression That Characterize Long-term Survival in Advanced Stage Serous Ovarian Cancers , 2005, Clinical Cancer Research.

[33]  W. Sadee,et al.  ABCB5-mediated doxorubicin transport and chemoresistance in human malignant melanoma. , 2005, Cancer research.

[34]  S. Bapat,et al.  Stem and progenitor-like cells contribute to the aggressive behavior of human epithelial ovarian cancer. , 2005, Cancer research.

[35]  R. Henkelman,et al.  Identification of human brain tumour initiating cells , 2004, Nature.

[36]  S. Rafii,et al.  Alternative promoters regulate transcription of the gene that encodes stem cell surface protein AC133. , 2004, Blood.

[37]  Juan Xiao,et al.  [The expression and functional characteristics of AC133 antigen in cord blood hematopoietic cells]. , 2002, Zhonghua nei ke za zhi.

[38]  W. Huttner,et al.  The Human AC133 Hematopoietic Stem Cell Antigen Is also Expressed in Epithelial Cells and Targeted to Plasma Membrane Protrusions* , 2000, The Journal of Biological Chemistry.

[39]  J. Kearney,et al.  AC133, a novel marker for human hematopoietic stem and progenitor cells. , 1997, Blood.

[40]  R. Bast,et al.  Transforming growth factor‐beta inhibits proliferation of human ovarian cancer cells obtained from ascites , 1994, Cancer.

[41]  P. Humphrey,et al.  Clonal origin of epithelial ovarian carcinoma: analysis by loss of heterozygosity, p53 mutation, and X-chromosome inactivation. , 1992, Journal of the National Cancer Institute.

[42]  R. Knapp,et al.  Unifocal origin of advanced human epithelial ovarian cancers. , 1992, Cancer research.